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1
Introduction

Today, if someone says “I’m going to Las Vegas!”, we might immediately assume that
they are going to Las Vegas to gamble. Three hundred years ago, when a man in the
Netherlands said, “I’m going to Utrecht!”, a similar assumption would have been that
he is going to Utrecht to have sex with other men. In these utterances, there is no expli-
cit mention of homosexuality or gambling — the “surface-level” meanings of the two
sentences are just about visiting the named city. Still, for the second utterance, who the
speaker is (i.e., a man), the context (i.e., three hundred years ago in the Netherlands)
and knowledge of the world (i.e., the Utrecht sodomy trials in the 18th century) tell a
supplementary story. In short, understanding language is more complex than it might
seem.

At the heart of this dissertation lies language variation, that is, different ways of saying
the same thing. Human language is full of it. For instance, both words “Utrechter” and
“Utrechtenaar” refer to an inhabitant of the city of Utrecht. Out of the two, “Utrechte-
naar” is the historically more accurate term (van Lieshout et al., 2024) — certainly three
hundred years ago — while “Utrechter” is the more common term today. Historically,
“Utrechtenaar” also has the connotation of referring to gay men (van Lieshout et al.,
2024). Today, when someone uses “Utrechtenaar” over “Utrechter” to refer to them-
selves, we might know more about them — for example, that they are more likely part
of the local queer community. We can say that the use of “Utrechtenaar” carries addi-
tional social meaning.

Language models today are often not able to represent, let alone understand such
nuances. Consider two Dutch sentences “Ik ben een Utrechter.” and “Ik ben een
Utrechtenaar.”. The translation tool DEEPL translates both of these sentences to “I am
a Utrecht resident.”. This translation is perfectly reasonable as both “Utrechter” and
“Utrechtenaar” refer to an inhabitant of the city of Utrecht. We can say that, in this
instance, it is good that DEEPL is “robust to language variation”. However, there are
situations where it might be helpful for translation systems to be “sensitive to language
variation”. Imagine a news report in Dutch where two people refer to themselves as an

3
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“Utrechter” and as an “Utrechtenaar”, respectively. Translating both as “Utrecht res-
ident” might obscure subtle distinctions in background and social identity — possibly
leading to confusion or loss of narrative nuance.

This is problematic because natural language processing (NLP) systems are increas-
ingly used throughout society, with the latest surge being caused by the release of
CHATGPT in November 2022. One might use CHATGPT to write a dissertation, DEEPL
to translate a dissertation summary from English to Dutch and GOOGLE SEARCH to
find relevant academic publications. NLP systems can automatically caption YouTube
videos, translate Dutch rental agreements into English, summarize complex legal texts
in simpler language, search thousands of medical texts for conditions with similar
symptoms and support numerous other real-world applications.

In this dissertation, I focus on accounting for language variation in NLP models.
There are two core problems that I address: (1) creating NLP models that are robust
to language variation and (2) creating NLP models that are sensitive to language vari-
ation. Before I specify my research question further, let me give a short overview of
NLP in recent years and then unpack the problem of robustness and sensitivity.

A Short History of NLP

If you enter “writing a successful dissertation” to find relevant websites using GOOGLE

SEARCH, Google starts by converting your search terms into a numerical form that a
machine can process. One of the main challenges in NLP over the last decades has
been how to represent the meaning of a word or phrase in machine-readable form
— using real numbers, arranged in vectors and matrices. In this century, one of the
most successful ideas applied to NLP is the distributional hypothesis. It has its origins
in philosophy and linguistics and states that words are similar in meaning if they ap-
pear in similar contexts (Harris, 1954; Firth, 1957; Wittgenstein, 1953; Brunila and La-
Violette, 2022). The distributional hypothesis informs training tasks for encoder (e.g.,
Google’s BERT in Devlin et al., 2019 and Meta’s ROBERTA in Liu et al., 2019) and de-
coder models (e.g., OpenAI’s GPT-2 in Radford et al., 2019 and CHATGPT in OpenAI,
2022 and DEEPSEEK in Guo et al., 2025). Encoder models learn to represent text as
real numbered vectors — they encode text in machine-readable form. These real
numbered vectors are often called embeddings. Decoder models learn probability dis-
tributions for texts. They generate text based on the learned probability distributions
— they decode text from real-numbered vectors and matrices.

Text embeddings and encoder models were at the forefront of a lot of the advance-
ments in NLP in the last decade (Mikolov et al., 2013; Devlin et al., 2019). The real-
numbered vectors led to leaps in solving previously difficult classification tasks like
natural language inference (i.e., does a hypothesis text follow from a premise text?) or
paraphrase classification (i.e., do two texts have the same meaning?), which are in-
strumental to practical applications like information retrieval (e.g., GOOGLE SEARCH1).
With scaling up training to huge amounts of text data and billion parameter model
sizes as well as post-training advances (i.e., altering models after initial training), de-

1https://blog.google/products/search/search-language-understanding-bert/

https://blog.google/products/search/search-language-understanding-bert/
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coder models have largely taken over functions previously taken on by encoder models,
at the latest with the release of CHATGPT in November 2022. Today, decoder models
are often able to solve a variety of problems “zero-shot” using in-context learning (i.e.,
prompting): We can now directly ask a language model for an answer to a problem
without having to train it for that specific problem first. For example, we can ask CHAT-
GPT if “Lucy had studied so hard.” follows from “Anna did a lot worse than her good
friend Lucy on the test because she had studied so hard.” and it will usually generate
the correct answer.2 And, perhaps more impressively, we can now ask large language
models trained only on text data to do tasks thought almost impossible for them in
2021 like coding or playing chess.3

Overall, the challenge of representing text meaning in machine readable form is found-
ational in NLP, as language models rely on representing the meaning of texts as vectors
and matrices to process and further manipulate natural language.

Model Robustness to Language Variation

Up until now, I employed a rather vague notion of “surface-level” meaning. Let me get
a bit more specific. NLP has typically been interested in representing what I call the ref-
erential meaning4 or semantic content5 of words and texts. Coming back to the initial
example, the referential meaning of the word “Utrechter” is what the word “Utrechter”
refers to, that is an actual inhabitant of the city of Utrecht in the Netherlands. Differ-
ent forms can have the same referential meaning: “Utrechtenaar” refers to the same
concept, an inhabitant of Utrecht. Being able to map words with the same referential
meaning to a similar computational representation can be and has been very useful
for typical semantic NLP tasks like paraphrase classification or natural language in-
ference. One should not have to use the exact term “Utrechter” when searching for
documents on the inhabitants of the city of Utrecht with GOOGLE SEARCH. Efforts in
NLP to treat different linguistic forms with similar referential meanings similarly are
what I call making NLP models robust to language variation.

Language models are not necessarily robust to language variation. NLP tools might
perform differently — usually less well — for people who use less common language
varieties (Grieve et al., 2025). Someone writing in African American English can ex-
pect lower performance of NLP systems than someone writing in “Standard” Amer-
ican English (Blodgett et al., 2016; Ziems et al., 2023) and asking CHATGPT the same
question in Bulgarian costs more U.S. dollars than using Standard American English
(Petrov et al., 2023). Furthermore, different surface forms expressing the same refer-

2Example taken from WNLI (Wang et al., 2018).
3The impressive thing about language models playing chess is not anymore that a machine is good at playing

chess. This is not surprising since 1997 when IBM’s DEEP BLUE system beat grandmaster Garry Kasparov.
The surprising and impressive part is that now, language models learn to play chess as a “side product”.
CHATGPT is not a specific expert system designed for game playing or chess. It has not even been taught
the rules of chess. It only learned to manipulate text.

4I am using “referential meaning” in a sense common to literature in sociolinguistics, e.g., Campbell-Kibler
(2011). It is somewhat connected to de Saussure (1916)’s separation of signifier (word) and signified (de-
scribed idea or thing). However, note that the term “referential meaning” is not generally used in linguistics
and might invoke different understandings in semiotics. See more in Section 2.2.

5Throughout the dissertation I use referential meaning and (semantic) content interchangeably.
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ential meaning can influence the performance of NLP models. For example, spelling
variations have been shown to impact classification accuracy (Han and Baldwin, 2011;
Eisenstein, 2013; Barteld et al., 2016, 2018), while paraphrasing a prompt can similarly
lead to both increases and decreases in model performance (Mizrahi et al., 2024; Wahle
et al., 2024).

Initial efforts in NLP to improve robustness were often centered around text normal-
ization, that is transforming text into a more standardized form (Han and Baldwin,
2011; Liu et al., 2011; Barteld et al., 2018; van der Goot et al., 2021) and selecting “good
quality”, standardized language for training only (Gururangan et al., 2022). In our ex-
ample that could mean to alter “Utrechtenaar” to something closer to “Utrechter” in
a text normalization step before handing it to the Google Search pipeline or CHAT-
GPT. However, the ideology and existence of a standard form of language has been
questioned in other fields (Bell, 2014; Craft et al., 2020) and increasingly so in NLP
(Eisenstein, 2013; Gururangan et al., 2022). Another common approach is to include
different forms in training while encouraging models to treat forms with the same ref-
erential meaning similarly (Eisenstein, 2013; Barteld et al., 2018; Piktus et al., 2019; Liu
et al., 2020; Nguyen et al., 2021). For example, this could mean including examples of
“Utrechtenaar” next to examples of “Utrechter” in the training dataset and manipu-
lating model representations so that the meaning vector of “Utrechtenaar” is closer to
that of “Utrechter”.

Model Sensitivity to Language Variation

In contrast to only considering the referential meaning for “Utrechtenaar” and
“Utrechter”, one could also argue that the choice of an author to say “Utrechten-
aar” over “Utrechter” carries social meaning beyond the referential. Utrecht became
widely associated with homosexual men in 1730 when a wave of sodomy trials swept
through the Netherlands starting with the execution of 18 men in Utrecht (van Lieshout
et al., 2024). Soon the word “Utrechtenaar” was used in a derogatory way in everyday
language throughout the country and became synonymous with being homosexual.
In 1947, an Utrecht newspaper introduced the term “Utrechter” as an alternative to
“Utrechtenaar” to escape the second meaning of the term. Up until today, with the
negative association to “Utrechtenaar” fading, the term “Utrechter” is more commonly
used for inhabitants of Utrecht. However, the dialectal variant “Utrechtenaor” was
consistently common in some local speech communities and, recently, there have
been efforts to reclaim “Utrechtenaar” by the local queer community (van Lieshout
et al., 2024). All that said, we can probably say we have more information about a
speaker that uses “Utrechtenaar” compared to “Utrechter”. They are more likely to be
an Utrecht local and belong to the queer community. In other words, when we repres-
ent “Utrechtenaar” and “Utrechter” with almost the same vector, we might lose social
information and connotation about a considered text.

“Utrechtenaar” is a lexical variant of “Utrechter”. This is only one aspect of the more
general concept of language variation. Language variation is present and pervasive
in all aspects of language. Language variation has been studied by comparing differ-
ent ways of saying the same thing (e.g., in Labov, 1972). Language variation can, for
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example, be lexical (e.g., “Utrechter” vs. “Utrechtenaar”), syntactic (e.g., “I gave the
dissertation to Dong” vs. “I gave Dong the dissertation”) or orthographic (e.g., “writ-
ing” vs. “writin”). Like with “Utrechtenaar”, such variation is often not random, but
systematically linked to regional, social, and contextual factors (Nguyen et al., 2016;
Eckert, 2008). Language variation carries social meaning, i.e., information about the
social background and identity of the language user (Nguyen et al., 2021).

Being able to represent different language varieties, can be useful for form- or style-
based NLP tasks like authorship verification (i.e., have two texts been written by the
same author?), or style transfer (i.e., change the style of a given text without changing
the referential meaning). A machine translation system should not just translate the
referential meaning of a formal cover letter, but also keep the original format and use a
style that resembles the formal style in the original text. I call efforts in NLP to repres-
ent different varieties — whether in dataset curation, training, representation or eval-
uation approaches — making NLP more sensitive to language variation.

Language models are not necessarily sensitive to language variation. In NLP, research-
ers have typically trained language models without considering the full range of vari-
ation in English or other languages (Bender and Friedman, 2018; Gururangan et al.,
2022; Grieve et al., 2025). As a result, models typically overrepresent more common
varieties and underrepresent less common ones. Even if language models are sensit-
ive to language variation, they might still display undesirable behaviors (Grieve et al.,
2025): They might be covertly racist by assigning less-prestigious jobs to speakers of
African American English (Hofmann et al., 2024) or generate condescending answers
and stereotype users that use non-standard language varieties like Nigerian English
(Fleisig et al., 2024). Such stereotyping might occur because speakers of these varieties
are represented in training datasets through speech of others that reflects stereotypes
(Grieve et al., 2025). Intentionally and fairly representing different language varieties
and language forms has typically been neglected in NLP (Hovy, 2018; Nguyen et al.,
2021; Hovy and Yang, 2021). However, explicitly adding social information in the form
of sociodemographic variables (e.g., age, gender, social class) can help the perform-
ance of NLP models (Volkova et al., 2013; Wu et al., 2021; Hovy and Yang, 2021). Further,
including information about a used language variety and social information about the
user can enable accessibility efforts (e.g., simplifying a text for a child or summarizing
a text for a non-expert) or further improve the quality of the NLP system by adapting
the generated text to the user (Dudy et al., 2021; Stoop and van den Bosch, 2014).6 Ad-
ditionally, ensuring that language models accurately represent a wider range of human
language can be a goal in itself (Blodgett et al., 2020).

In summary, both how to make NLP models more sensitive to language variation and
how to make them more robust to it are important considerations in NLP that need to
be explored more. Making NLP models more robust to language variation is helpful
for semantic tasks like natural language inference and enables invariance across dif-
ferent surface form and social groups (Lucy et al., 2024). Making NLP models more
sensitive to language variation can help form- and style-based tasks like authorship

6Such personalization efforts can lead to potential harms specifically related to privacy. See Section 7.3 for a
discussion.
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verification and enables adaptation to social groups (Lucy et al., 2024). There might
not exist a one-size-fits-all solution. For example, making models more robust to lan-
guage variation with normalization efforts might come at the expense of sensitivity to
that variation. Overall, I argue that we should consider language variation more in NLP
systems.

1.1. Research Questions

The overarching motivation behind this dissertation is to develop NLP methods that
account for language variation. With accounting for language variation, I specifically
refer to (1) making models sensitive to form- and style-based differences (2) making
models robust to form- and style-based differences. I present four research questions
that I address in this dissertation. All of them address a small fraction of the over-
arching motivation in that each research question focuses on a specific research con-
text (e.g., tokenizers as a building block of LLMs). I group the research questions into
three parts that focus on studying (1) tasks requiring sensitivity to language variation
and tasks requiring robustness to language variation, (2) the former, and (3) the lat-
ter.

Study A: Tokenization for Variation-Robust and Variation-Sensitive
Tasks

The first part of this dissertation focuses on tasks requiring robustness to language
variation (e.g., for semantic tasks like natural language inference, labels do not depend
on whether a text uses British or American spelling) and tasks requiring sensitivity to
language variation (e.g., for form-based tasks like authorship verification, labels de-
pend on whether a text uses British or American spelling). Tasks that require robust-
ness to language variation might need a different approach from LLMs than tasks re-
quiring sensitivity to language variation — down to the fundamental building blocks of
LLMs. I investigate one such fundamental building block of LLMs: tokenizers.

Research Question 1 (RQ1): How do different key algorithmic decisions
for tokenizers influence the performance on downstream tasks: Tasks re-
quiring robustness to language variation and tasks requiring sensitivity to
language variation?

Tokenizers break up input strings and determine the actual tokens that are fed into lan-
guage models. As discussed previously, language variation is systematically linked to
regional, social and contextual factors (Coupland, 2007; Eckert, 2012; Nguyen et al.,
2016) and some language varieties are more common than others. Tokenizers be-
have differently for linguistic forms that are less common (Matthews et al., 2024;
Ovalle et al., 2024), which in turn influences the features a language model can work
with. In Chapter 3, I introduce the distinction between variation-robust and variation
sensitive-tasks, highlighting how tokenization might affect them differently. Then, I
investigate whether tokenizers in fact differently impact downstream performance on
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tasks that are robust to language variation and tasks that are sensitive to language vari-
ation.

Study B: Representing Linguistic Style

In the second part of this dissertation, I focus on developing text representations that
are sensitive to one aspect of language variation: linguistic style. Specifically, I invest-
igate how to evaluate text representations on their sensitivity to linguistic style (RQ2a)
and how to develop neural text representations that are sensitive to linguistic style
(RQ2b).

Research Question 2a (RQ2a): How can we evaluate whether text repres-
entations are sensitive to changes in linguistic style?

Linguistic style has been extensively studied in (socio-)linguistics (e.g., Labov, 1972;
Bell, 1984; Eckert, 2008) and also received some attention in NLP (Danescu-Niculescu-
Mizil et al., 2012; Neal et al., 2017; Gatt and Krahmer, 2018; Jin et al., 2022). In NLP,
there are several general evaluation benchmarks for different linguistic phenomena
(e.g., Wang et al., 2018, 2019) but less emphasis has been put on linguistic style. In
Chapter 4, I develop STEL, the first framework to evaluate text representations in their
abilities to represent style.

Research Question 2b (RQ2b): How can we build neural representations
of linguistic style that are disentangled from referential meaning?

Recently, training objectives based on the authorship verification task have been used
to train neural vector representations of text that are sensitive to author style (Boen-
ninghoff et al., 2019b; Hay et al., 2020; Zhu and Jurgens, 2021). In Chapter 5, I experi-
ment with using the same task to train neural text representations that are sensitive to
linguistic style. The assumption is that two texts written by the same author are more
likely to be written in the same style than two texts written by different authors. How-
ever, representations trained on the authorship verification task might suffer from be-
ing sensitive to not just style, but also to referential meaning. This is because style and
referential meaning are often correlated (Gero et al., 2019; Bischoff et al., 2020). An au-
thor using primarily British spelling might more often discuss British politics or British
landmarks. As a result, a model solving the authorship verification task might succeed
in part by representing the referential meaning of texts. In Chapter 5, I introduce a
variation of the authorship verification training task by increasing the likelihood that
utterances from different authors are about similar topics. I evaluate the newly trained
neural text representations on a variation of STEL that pitches style against referential
meaning.

Study C: Paraphrasing Across Speakers

In the last part of this dissertation, I consider tasks that require robustness to lan-
guage variation. Specifically, I focus on detecting paraphrases in dialog. The task of
paraphrase classification across speakers, requires robustness to shifts in viewpoint
(e.g., Speaker 1: “That book is mine.” becomes Speaker 2: “That book is yours.”),
contextual information (e.g., “several years” might be “a while” for the topic of dis-



I

10 1. Introduction

cussion) and speaker varieties (e.g., African American English vs. Standard American
English).

Research Question 3 (RQ3): How can we detect paraphrases across speak-
ers in dialog?

Repeating or paraphrasing what the previous speaker said has time and time again
been found to be important in human-to-human or human-to-computer dialogs: It
encourages elaboration (Rogers, 1951; Miller and Rollnick, 2013; Hill, 1992; Shah et al.,
2022), de-escalation (Vecchi et al., 2005, 2019), and can increase the perceived response
quality of dialog systems (Weizenbaum, 1966; Dieter et al., 2019). In Chapter 6, I invest-
igate paraphrases across turns in dialog. Dialog is a setting that is uniquely sensitive to
context (Grice, 1957, 1975; Davis, 2003) and might make matching the same referential
meanings especially difficult. I provide an operationalization of context-dependent
paraphrases in dialog, develop a training for crowd workers to classify paraphrases
in dialog and introduce a dataset with utterance pairs from NPR and CNN news in-
terviews annotated for context-dependent paraphrases. I compare training encoder
models and in-context learning with decoder models to automatically detect para-
phrases across speaker turns in dialog.

1.2. Main Contributions

With this dissertation, I make theoretical, empirical and artifact contributions.7

Theoretical Contributions

• I introduce and motivate the separation of NLP tasks into variation-sensitive and
variation-robust tasks (Chapter 3). This separation emphasizes the different re-
quirements models might have to fulfill to deal with language variation in differ-
ent scenarios. I motivate and explain why tokenizers might play a crucial role in
both variation-sensitive and variation-robust tasks.

• I provide an evaluation framework called STEL to evaluate computational text
representations on how well they represent linguistic style (Chapter 4). I make
the framework modular to cater to different definitions of style.

• I motivate the use of “hard-negatives” for learning stylistic text representations
(Chapter 5) to make style representations independent from referential mean-
ing. I also motivate a variation of STEL to test a model’s ability to prioritize style
over referential meaning in its representations.

• I introduce a definition of context-dependent paraphrases and motivate the im-
portance of detecting paraphrases in context — particularly across speakers in
dialog (Chapter 6).

7I use “I” to introduce and conclude my dissertation. However, this work was made possible only through
the support of many others. See the research chapters for the respective collaborators and the acknowledg-
ments for my broader support system.
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Empirical Contributions

• I am the first to investigate tokenizers while accounting for language variation
(Chapter 3). I show that the best algorithmic choices for tokenizers vary on tasks
requiring robustness to and sensitivity to language variation. I show that the
under-researched “pre-tokenization” step of tokenizers has the biggest influence
on performance. Moreover, I find that common evaluation measures of token-
izers work less well to predict downstream performance on tasks that are sensit-
ive to language variation.

• I am the first to systematically evaluate computational text representations in
their sensitivity to linguistic style (Chapter 4). I find that neural text represent-
ations are better than previous feature-engineered approaches in representing
style across several dimensions.

• I train neural text representations of style using an authorship verification train-
ing task that pitches referential meaning against style (Chapter 5). I am the first
to evaluate neural representations on their ability to represent linguistic style in-
dependent of referential meaning.

• I am the first to operationalize, annotate and automatically detect context-
dependent paraphrases across turns in dialog (Chapter 6). I reach promising
results with both decoder and encoder models. When identifying text spans that
constitute paraphrase pairs, encoder models profit from not being able to hallu-
cinate quotes.

Artifact Contributions

• I provide a compilation of existing and original tasks to evaluate models on tasks
requiring sensitivity and robustness to language variation (Chapter 3).

• I provide data for four style dimensions demonstrating the introduced STEL
evaluation framework to evaluate text representations on their sensitivity to lin-
guistic style (Chapter 4).8

• I release stylistic text representations, or style embeddings (Chapter 5), that have
been appreciated in the NLP community for their independence from referential
meaning.9

• I provide a dataset of context-dependent paraphrases in news interviews10, and
a trained encoder model to classify paraphrases in dialog (Chapter 6).11 Addi-
tionally, I iteratively developed and share instructions for a hands-on annotator
training in detecting paraphrases in dialog.12 While annotation procedures for
NLP tasks are typically not mentioned as individual contributions, I still consider

8https://github.com/nlpsoc/STEL
9https://huggingface.co/AnnaWegmann/Style-Embedding
10https://huggingface.co/datasets/AnnaWegmann/Paraphrases-in-Interviews
11https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog-ALL
12https://annawegmann.github.io/Paraphrases.html

https://github.com/nlpsoc/STEL
https://huggingface.co/AnnaWegmann/Style-Embedding
https://huggingface.co/datasets/AnnaWegmann/Paraphrases-in-Interviews
https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog-ALL
https://annawegmann.github.io/Paraphrases.html
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this hands-on and iteratively tested training of annotators a valuable contribu-
tion as descriptions of annotation instructions and procedures are hard to find
and increasingly relevant when considering human variation.

1.3. Outline

The remainder of this dissertation continues with a background section, four research
chapters and a conclusion. Note that this is a paper-based dissertation and consists of
a collection of four conference papers, that are tied together and put into perspective
with the help of an introduction, a background section and a conclusion.

Part I: Background Part I concludes by providing background on the two research
areas that are at the core of my dissertation: NLP methods and linguistic style. First,
I introduce the foundations of the historically successful transformer encoder models
and argue why, even after the broad success of pure decoder models like CHATGPT,
encoder models are still relevant to this day. Second, I provide an overview of different
style definitions and style operationalizations in sociolinguistics.

Part II: Tokenization for Variation-Robust and Variation-Sensitive Tasks Chapter 3
introduces the separation of NLP tasks into tasks requiring robustness and sensitivity
to language variation. I motivate the relevance to one foundational building block of
LLMs: tokenizers. I show that the best tokenizer varies for tasks requiring robustness
and sensitivity to language variation.

Part III: Representing Linguistic Style Chapters 4 and 5 focus on a task requiring
sensitivity to language variation: representing the linguistic style of a text. Specific-
ally, Chapter 4 introduces an evaluation framework to evaluate in how far text repres-
entations represent linguistic style. Chapter 5 uses contrastive learning and demon-
strates that hard negatives are crucial to train content-independent style representa-
tions.

Part IV: Paraphrasing Across Speakers Chapter 6 focuses on a task requiring ro-
bustness to language variation: detecting paraphrases across speaker turns in dia-
log. I provide annotation procedures that deal with disagreements among annotators,
provide a dataset and experiment with decoder and encoder models to detect para-
phrases computationally. For paraphrase span identification, encoder models profit
from not being able to hallucinate quotes.

Part V: Conclusion Chapter 7 summarizes the main findings of my dissertation and
discusses future research directions when it comes to accounting for language vari-
ation in NLP.



2
Background

2.1. Natural Language Processing

Natural language processing (NLP) is a research field combining computer science,
linguistics and artificial intelligence that studies algorithms that process and gener-
ate natural language. Here, natural language stands for human languages like Dutch,
Chinese or Tamil that developed “naturally” over time, as opposed to artificial lan-
guages like programming languages or mathematics. NLP models take natural lan-
guage as input or return natural language as output.1 The recently surging large lan-
guage models (LLMs) like CHATGPT2 do both, they receive natural language as input,
process and manipulate it, and return natural language as output. Real-world applica-
tions that make use of NLP models include information retrieval systems like GOOGLE

SEARCH, machine translation systems like DEEPL and dialog systems like CHATGPT.
By now, NLP systems are increasingly and commonly used for many different applica-
tions and by many different social groups across society.

Note that I use language models as an umbrella term for both encoder models and
decoder models. Historically, only models that can generate text were considered lan-
guage models. In this thesis, I use a broad understanding of the term language model
including encoder models. Now, the term language model is usually used for neural
NLP models that encode or generate texts.

Text Representations

Vector representations of texts are fundamental to the field of NLP. Generally, text
representations transform texts into real numbered vectors (called text embeddings)

1NLP models can also take other modalities (e.g., images) as input or output. However, every NLP model
processes natural language of some form. In this dissertation, I only consider text data.

2CHATGPT is technically an application build on top of an LLM like GPT-4. I am using CHATGPT as a stand
in for OpenAI’s underlying LLMs as it is the more broadly known term outside of NLP.

13
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that represent the object of interest — usually the meaning of a text. I focus on modern
neural approaches in this dissertation. However, classic approaches like TF-IDF
(Spärck Jones, 1972) or word n-grams were (and sometimes still are) successfully used
for some time (Jurafsky and Martin, 2025).

Word Embeddings

The neural representation model that transformed the field of NLP in 2013, is the
word embedding algorithm WORD2VEC (Mikolov et al., 2013). It used the continuous
bag-of-words training task.3 For continuous bag-of-words, the word that is currently
learned is masked out and the neural model has to learn to predict it from the 10 sur-
rounding words.4 It is called bag-of-words as the model cannot make use of the order
or structure of other words surrounding the masked out word; all 20 context words
are just “put in a bag” and considered without their structure. WORD2VEC provides
300-dimensional vector representations of words. It represents words that appear in
similar contexts close to each other. This idea can be traced back to the distributional
hypothesis (i.e., similar words appear in similar contexts) introduced in linguistics
and philosophy (Harris, 1954; Firth, 1957; Wittgenstein, 1953; Brunila and LaViolette,
2022). WORD2VEC represents words in a dense, continuous vector space capable
of capturing more nuanced semantic relationships than previous approaches. Soon
other word embedding models like GLOVE (Pennington et al., 2014) and FASTTEXT

(Bojanowski et al., 2017) followed. Still, word embeddings had a problem: They return
single, static vectors for a word, no matter what context it appears in. However, a word
like “run” can take on different meanings depending on what context it appears in.
Consider the difference in meaning between “run” in “run a company” and “run a
marathon”.

Transformers

In the 2010s, there were other efforts in NLP to use neural networks to represent and
manipulate not just single words but sequences of words to retain structural informa-
tion and word dependencies. In 2017, this led to the break-through transformer archi-
tecture (Vaswani et al., 2017), see also Figure 2.1. Transformers remain the dominant
architecture for language models to date. One of the key innovations of transformers
is the principle of self-attention. For a given input word, self-attention computes a
weighted average of all words in the input sequence, where the weights reflect the “rel-
evance” of each word to the one being considered. For example, consider the sentence
“This is my dissertation.”, “This” might receive higher relevance for “dissertation” than
“is” or “my”. Self-attention can be applied in parallel which is a huge advantage com-
pared to previously common architectures like RNNs that process everything sequen-
tially. Further, it led to contextualized text representations: Vector representations of
the word “run” in a given input sequence are now different for input sequences “run a
company” and “run a marathon”.

3Also the skip-gram training task. It’s similar to bag-of-words, so I skip-that.
4This as well as other numbers like the 300 dimensions following later are hyperparameters that can take on

other values. I use specific numbers for illustrative purposes.
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Figure 2.1: Simplified Transformer Architecture. I display a simplified schematic of the
encoder-decoder transformer architecture (Vaswani et al., 2017). The original schematic in-
cludes sequences of nonlinearities and feed forward neural networks, positional encodings and
output probabilities. I display the tokenizer separately in grey as I zoom in on tokenizers in Re-
search Chapter 3. The tokenizer cuts the input text into individual tokens. This is signified by
the single blocks in the figure. The transformer is an architecture that can include an encoder
and a decoder (as displayed), just an encoder or just a decoder. The attention mechanism is bid-
irectional in the encoder models, and unidirectional in the decoder model. Encoder models are
typically trained using a masked language modeling task. Decoder models are typically trained
using a next word prediction task. In the figure, a machine translation model is displayed. “Dis-
sertation” is predicted as the next word in a German translation of “dissertation”.

The original transformer architecture consists of an encoder and a decoder. Encoder
models are typically trained using masked language modeling, where the model pre-
dicts missing words in a sequence (e.g., “I defended my ___ successfully.”). By learning
to perform masked language modeling, encoders learn representations of texts. De-
coder models, by contrast, are usually trained using next word prediction, where the
model predicts the next word in a sequence of words (e.g., “I defended my ___”). By
learning to perform next word prediction, decoder models learn to generate texts. One
of the first successful models making use of the transformer architecture was the en-
coder model BERT (Devlin et al., 2019), which is still used for classification tasks. The
first successful decoder models included GPT-2 (Radford et al., 2019). There are also
models, such as T5 (Raffel et al., 2020), that combine both encoder and decoder ar-
chitectures as suggested in Vaswani et al. (2017). While encoder models where more
heavily studied with the release of BERT, decoder models have increasingly become
the dominant type of language model — especially following the release of CHATGPT
in November 2022.
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Before an input can be processed by either an encoder or decoder model, it must first
be converted into a sequence of tokens in a tokenization step. Generally, the tokenizer
is a separate algorithm that splits raw input text into smaller units — tokens — that
are then fed to the language model. Then, each token is mapped to a unique token ID,
which is in turn used to extract learned vector representations (cf. the small blocks in
Figure 2.1). Tokens might be whole word (e.g., “the”), superwords (e.g., “of the”), sub-
words (e.g., “th”), or even individual characters (e.g., “t”). For example in Figure 2.1,
the input phrase “my dissertation” might be tokenized into {“my”, “ dis”, “sertation”}.
Tokenization typically consist of several stages including normalization (e.g., lower-
casing all text as done for BERT UNCASED in Devlin et al., 2019), pre-tokenization (e.g.,
whitespace splitting, cf. Mielke et al., 2021) and segmentation. The segmentation step
is arguably the most important. Here, the tokenizer segments a text based on a learned
vocabulary and segmentation rules. The most common tokenizer algorithm in recent
language models is Byte-Pair Encoding or BPE (Sennrich et al., 2016). Among others,
it is used by LLAMA 3 (Grattafiori et al., 2024), MIXTRAL (Jiang et al., 2024), DEEPSEEK-
R1 (Guo et al., 2025) and GPT-4 (Achiam et al., 2023). Other algorithms are discussed
in Mielke et al. (2021). Tokenization is particularly important when models encounter
previously unseen words (Mielke et al., 2021), when different types of tasks are con-
sidered (cf. Chapter 3) and for computation, as splitting a text into more tokens re-
quires more calculations and reduces the amount of text that fits within the model’s
context window (Mielke et al., 2021).

The Importance of Encoder Models and Text Representations

I describe why up until today, good text representations are relevant in NLP and that
encoder models are important. I argue for both as I am creating text representations
for linguistic style in Chapter 5 and evaluate and train encoder models in all research
chapters.

The relevance of text representations In the previous section, I established that text
representations have been a major area of interest in NLP over the past decades. How-
ever, one could question their continued relevance with the following argument: Why
do we still need separate representations of text — like precomputed embeddings that
are provided as additional input to models — when generative models can already (or
will soon be able to) solve all the problems we needed text representations for in the
first place? For example, instead of using text representations to extract relevant doc-
uments for a GOOGLE SEARCH, we could directly ask a generative model to extract and
return relevant documents across all documents provided to the model. However, the
same example of GOOGLE SEARCH reveals a setting where text representations remain
relevant: Retrieval Augmented Generation or RAG (Ram et al., 2023). RAG is a popu-
lar method in information retrieval that retrieves an answer to the user’s question by
comparing the embedding vector of the question with the embedding vectors of doc-
uments stored in a relevant database. This approach allows access to a much larger
document pool since generative models are restricted in the number of tokens they can
process at once. Further, RAG can complement a generative model by leveraging a cur-
ated up-to-date and domain-specific database, thereby increasing accuracy and redu-
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cing hallucinations (Gao et al., 2024) — instances where the language model generates
incorrect or fabricated information. Beyond RAG, there are several other applications
that benefit from high-quality text representations such as measuring the semantic
change of words over time (Shoemark et al., 2019; Wegmann et al., 2020; Schlechtweg
et al., 2020), or clustering similar documents (Grootendorst, 2022).

The relevance of encoder models In the introduction, I established that encoder
models drove a lot of the progress in NLP in the last decade. However, decoder models
have since become the more heavily studied language model architecture. Despite this
global shift in research focus, encoder models remain widely used in practice (Warner
et al., 2024). This continued use is probably a result of state-of-the-art encoder mod-
els being typically much smaller than state-of-the-art decoder models, with encoder
models using millions and decoder models juggling billions of parameters. As a result,
encoder models are more efficient to train and can be applied more quickly than de-
coder models. Moreover, encoder models continue to perform well for discriminative
tasks like classification where they can outperform or perform similarly to much larger
decoder models (Warner et al., 2024). Overall, in applications where quick, cheap and
accurate replies are essential, encoder models can be preferable over prompting big
decoder models for every step.
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Sociolinguists generally think of styles as different ways of saying the same thing. In
every field that studies style seriously, however, this is not so

Penelope Eckert

2.2. Linguistic Style

In this dissertation, language variation is a central concept. Language variation has
been studied across many different research fields. For concreteness, I borrow termin-
ology and concepts from sociolinguistics — often from the U.S. American perspective5

— as it is one area where researchers have extensively investigated different forms of
language variation. Broadly, sociolinguistics studies how language interacts with so-
ciety, with a focus on linking language variation and change to social meaning (Mey-
erhoff, 2006; Bell, 2014; Holmes and Wilson, 2017). While my research chapters are
also motivated by sociolinguistic goals (e.g., enabling the study of linguistic accom-
modation with the help of style embeddings in Chapter 5), this dissertation primarily
focuses on representing linguistic style and language variation and does not yet de-
scribe varieties in specific populations or more broadly connect language variation to
social meaning (cf. future work in Chapter 7.3).

Language variation and style In this dissertation, two related concepts are dis-
cussed: language variation and linguistic style. Out of the two, language variation is
the broader concept compared to linguistic style, practically encompassing all forms
in which language can vary. Variation in linguistic style is only one, narrower form of
variation in language (Bell, 1984; Eckert and Rickford, 2001; Coupland, 2007). I focus
on explaining the literature on linguistic style further as it is the main focus of Part II.
I discussed language variation in Section 1 in Chapter 1. Note that linguistic style and
language variation are terms that are fundamentally intertwined. Although this sec-
tion centers on linguistic style, it also engages with key considerations related to other
types of language variation central to sociolinguistics.

5When discussing sociolinguistics in this dissertation, I usually refer to the U.S. American tradition of soci-
olinguistics. There are rich traditions in other parts of the world as well. See an overview of sociolinguistics
around the world in Ball et al. (2023).
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2.2.1. Style in General

Style has received a lot of attention in fields like sociolinguistics, stylometry, forensic
linguistics, but also in natural language processing. With the term researchers usually
aim to the describe the form of a text6 (i.e., how something is said) more so than its ref-
erential meaning (i.e., what is said). Describing a style can be understood as studying
what makes a phrasing distinctive (Irvine, 2001; Crystal, 2011) according to whatever
lens we currently choose to look through. However, it is a highly ambiguous and elusive
term that has previously been conceptualized in many different, sometimes conflicting
ways.7 It is impossible to give a complete overview here. Instead, I provide an overview
of the various style operationalizations that have influenced this dissertation (Sections
2.2.2 and 2.2.3). Before doing so, I will briefly make some general remarks.

Referential meaning Referential meaning8 is a term that is commonly used in so-
ciolinguistics (Labov, 1972; Lavandera, 1978; Campbell-Kibler, 2011; Nguyen et al.,
2016, 2021). The term appears to point toward two possible traditions: (1) the Mill-
Frege-Russell-Montague compositional semantics tradition in theoretical and formal
semantics (Labov, 1972; Weiner and Labov, 1983), which (among other things) form-
alizes the meaning of sentences through compositional grammars that systematically
pair linguistic expressions with logical representations (see, e.g., van Benthem and ter
Meulen, 2011), in a way that centers around the notion of reference, or (2) de Saussure
(1916)’s structuralist tradition (Hernández-Campoy, 2016), where a linguistic sign con-
sists of the signified (i.e., mental concept, e.g., an inhabitant of the city of Utrecht ) and
a signifier (i.e., the sound pattern or word, e.g., “Utrechter”) matched by arbitrary so-
cial conventions, where meaning is further determined by the sign’s relationship and
contrast with other signs within the linguistic system.

The referential meaning of a sentence is, roughly speaking, the factual message that
lies at the core of the sentence (i.e, the “What”) , as opposed to the linguistic means
through which this message is expressed linguistically (i.e., the “How”). This distinc-
tion is especially compelling in (early) variationist sociolinguistics (Labov, 1972; Eck-
ert, 2012) which studies quantitatively how different ways of saying the same thing
— known as variants of a sociolinguistic variable — are connected to external social
factors. Two variants are often assumed to have the same referential meaning if they
are the same in a truth-conditional sense (i.e., they are true in exactly the same situ-
ations). The “social and/or stylistic significance” of variants that have the same refer-
ential meaning might differ considerably (Labov, 1972; Weiner and Labov, 1983).

A precise interpretation of this definition poses practical challenges. It has been
argued, for example, that only Labov (1972)’s original object of study — phonological
variables — can leave referential meaning untouched whereas all other variables in-
cluding lexical and syntactic variables will necessarily change the referential mean-

6I do not discuss the term style in other modalities. Note, however, that one might also discuss the distinctive
style of a painting or an outfit.

7Scholars have even argued against using the term style at all, e.g., Crystal (2011).
8Other terms that capture a similar notion include “content”, “referential content”, “semantic content”, “se-

mantic meaning”, “linguistic meaning” or “denotational meaning” in sociolinguistic work like Eckert and
Rickford (2001); Meyerhoff (2006); Eckert (2008, 2012); Bell (2014); Holmes and Wilson (2017) and Ball et al.
(2023). Throughout the dissertation I use referential meaning and (semantic) content interchangeably.
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ing as well (Lavandera, 1978; Campbell-Kibler, 2011; Sun et al., 2023). Further, Eckert
(2008, 2012) argues that a used style systematically connects an utterance to the so-
cial world, and style can thus not be fully separated from referential meaning. Gen-
erally, one might argue that every two forms necessarily contrast in meaning (Clark,
1992). Some work in sociolinguistics side-steps the problem of meaning equivalence
by identifying and studying the contexts in which a set of linguistic forms count as al-
ternants (Campbell-Kibler, 2011; Christensen and Jensen, 2022).
Nonetheless, I believe the notion of referential meaning to be useful because it draws
our attention to cases in which form varies but referential meaning remains approx-
imately the same (Weiner and Labov, 1983). In NLP, for example, we often face prac-
tical challenges where it is useful to cluster similar referential meanings (e.g., GOOGLE

SEARCH) or adapt to different styles (e.g., Machine Translation) which requires a separ-
ation of style and referential meaning of some form.

Speech production in psycholinguistics Psycholinguistics is an interdisciplinary re-
search field that studies how language is processed in the human brain. An influential
psycholinguistic model is Levelt (1989)’s model of speech production which separates
the human cognitive process of speech production into a conceptualizer (that creates
an idea or message), formulator (that phrases the message) and articulator (that pro-
duces the phonetic speech signal). The formulator can be influenced by contextual
factors like the alignment to an interlocutor or the importance of avoiding misunder-
standings (Garrod and Anderson, 1987; van Deemter et al., 2012). There are clear par-
allels between “referential meaning” in sociolinguistics, the notion of a “message” in
the psycholinguistics model, and the notion of a “message” in the classic modular nat-
ural language generation pipeline (which took Levelt’s pipeline as one of its sources
of inspiration) (Gatt and Krahmer, 2018), see Section 2.2.4. All these notions are sep-
arated from the articulation, formulation, form or linguistic style of an utterance or
text.

Style across research fields There are several fields that study linguistic style in some
capacity. I generally focus on style operationalizations and definitions from U.S. Amer-
ican sociolinguistics including work like Labov (1972) and Eckert (2008). Sociolinguist-
ics generally studies the relationship between language and society with a focus on
language change and variation. Other fields that study style include corpus linguist-
ics that study language use in text corpora including work like Biber (1988) and Biber
and Conrad (2019). Typical applications might include comparing language between
different genres like scientific papers or poems. Forensic linguistics studies style in the
context of law and crime investigation and is typically interested in recognizing a style
or idiolect unique to investigated individuals (Coulthard, 2004). Practical insights from
forensic linguistics also reciprocally influence stylistics and stylometry that more gen-
erally studies linguistic style in language. Specific applications might include investig-
ating the style of literary authors (Holmes, 1985), or attributing disputed literary works
(Mosteller and Wallace, 1963; Burrows, 2002; Stamatatos, 2009). Style has also been in-
vestigated in the general field of natural language processing to characterize authors
(e.g., age or gender in Koppel et al., 2002; Nguyen et al., 2013), detect stylistic incon-
sistencies (Collins et al., 2004; Stamatatos, 2009) or adapt styles in machine translation
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(Rabinovich et al., 2017; Niu et al., 2017, 2018). Note that these fields are not strictly
separable. Methods from corpus linguistics can inform sociolinguistics, forensic lin-
guistics uses methods from stylometry and so on. Further, there are several fields that
can be connected to linguistic style that I do not specifically discuss here like discourse
analysis, digital humanities, linguistic anthropology, or sociology.
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2.2.2. Style Conceptualizations

In this section, I discuss differences and commonalities in style when it comes to style
definitions and conceptualizations.

Whose style? Style is usually discussed in a relative sense, as a distinctive difference
between two objects of study (Irvine, 2001). However, the objects of study vary. In
(socio-)linguistics, style has most often been discussed as intra-individual variation
(Bell, 1984; Irvine, 2001; Labov, 2006; Meyerhoff, 2006): The variation in language use
of the same speaker across different situations. Famously, Labov (1972) compared the
style of individuals when he manipulated them to pay more or less attention to speech.
Sociolinguistics have studied the relationship between the variation within individu-
als and the variation between individuals or groups on the “social dimension” (Bell,
1984; Irvine, 2001) — for example in that the style of individuals indexes membership
of certain social groups (Eckert, 2008) like g-dropping might index a southern region
in the US (Campbell-Kibler, 2007). The collective linguistic repertoire of social groups
have also been called style (Eckert and Rickford, 2001) — for example, the language use
of women (Degaetano-Ortlieb, 2018; Degaetano-Ortlieb et al., 2021) — which deviates
from the focus on the individual. Next to styles of individuals or groups, domains,
genres and registers have also been objects of style research (Biber and Conrad, 2019;
Grieve, 2023). News reports, blogs and conversations might display very different pat-
terns in their linguistic features which might be called the style of a news report, blog or
conversation (Biber and Conrad, 2019; Irvine, 2001; Grieve et al., 2011). There are many
other objects of study that also have been described stylistically. For example, Trump’s
Twitter account over the course of a decade (Clarke and Grieve, 2019), the communica-
tion within social networks (Dodsworth and Benton, 2020), 200 years of court proceed-
ings (Degaetano-Ortlieb, 2018), different sections of the same text (Degaetano-Ortlieb
and Teich, 2017), academic disciplines (Andresen and Zinsmeister, 2017) or the literary
texts by specific authors or from specific time periods (Coupland, 2007).

What is the function of style? Style has been described in different ways. Some
scholars emphasize the aesthetic aspects of style9, seeing it as a matter of linguistic
variation with no or limited function (Biber and Conrad, 2019). Others argue that style
is fundamentally embedded in social meaning, shaping social identity, relationships,
and interactions (Campbell-Kibler et al., 2006; Coupland, 2007; Eckert, 2008, 2012).
Stylistic choices have been considered to mark and reflect social categories like demo-
graphic variables and social identities (Labov, 1972; Eckert, 1989). Labov (1972) found
that differences in pronunciation of /r/ were correlated with social class, while Eckert
(1989) found that self-identified “burnouts” at a school in Detroit used fewer standard
linguistic features than the more college-bound “jocks”. Additionally, stylistic choices
have been argued to not just reflect social identity or group membership but to be
an active part of indexing social identities as a positioning of individuals within the
social world (Eckert, 2008, 2012). For example, Bucholtz (1999) found the use of lin-

9In contrast to style, Biber studied “registers” more extensively which he defines as varieties of languages
associated with a particular situational context (Biber and Conrad, 2019). Biber’s registers have communic-
ative function. Other researchers might call Biber’s registers styles as well.
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guistic features associated with African American Vernacular10 to index a kind of mas-
culinity (Eckert, 2012). Coupland (2007) emphasizes that style is interactive. Speakers
might accommodate to or distance themselves from the style of their interlocutors or
audiences (Giles and Powesland, 1975; Bell, 1984), thereby shaping social relationships
(Coupland, 2007). For example, Bourhis and Giles (1977) found that integrative Welsh
learners (i.e., those learning Welsh out of interest in their cultural heritage) used more
accent features to distance themselves from the researcher’s RP English (i.e., a “stand-
ard” pronunciation of English) when they called Welsh a “a dying language” (Bourhis
and Giles, 1977). Similarly, Barrett (2006) found that Spanish functioned as a means
of expressing solidarity and resisting the authority of Anglo managers among Spanish-
speaking employees. Further, Bell famously found that New Zealand newscasters shif-
ted their pronunciation when talking to audiences considered to have higher or lower
status (Bell, 2014). Finally, when considering Biber and Conrad (2019)’s genre and re-
gister as style, style might serve further functions like structuring discourse and ful-
filling communicative purposes.

When does style vary? Fields like forensic linguistics are interested in idiolects, i.e.,
the distinctive and idiosyncratic stylistic choices of individuals (Coulthard, 2004) — es-
sentially the aspects of an individual’s style that remain relatively stable across all situ-
ations. Other aspects of style are generally considered variable. Linguistic style is often
considered in a relative sense. Irvine (2001) even argues that a particular style cannot
be explained in isolation but must be understood in relation to other styles, as styles
operate within a system of social differentiation and ideology. Style has usually been
considered dependent on the social and situational context (Eckert and Rickford, 2001;
Meyerhoff, 2006): Style can vary depending who the speaker is addressing (e.g., Bell,
1984; Giles and Powesland, 1975). Style also shifts depending on the topic of discus-
sion (Bell, 1984; Rickford and McNair-Knox, 1994). For example, Holliday (2021) finds
that biracial Black men displayed fewer African American intonational features when
discussing police narratives. Additionally, the mode of communication (e.g., writing
and speech in Biber, 1988; sign language in Kusters and Lucas, 2022) as well as the
genre (i.e., conventions to structure complete texts like news reports or academic pa-
pers) and register (i.e., functional use of features in a given context like technical jargon
in a contract) can have an influence (Biber, 2012). Generally, speech conditions (e.g.,
speech to a crowd, speech in the courtroom in Ervin-Tripp, 2001) can influence styl-
istic choices. Other situational factors that shape style can include the social identity
and group membership of interlocutors (Eckert and Rickford, 2001), the current histor-
ical period (Coupland, 2007; Biber and Conrad, 2019), or the speaker’s personal goals
(Meyerhoff, 2006). However, even with a fixed audience and setting, style might shift
dynamically based on a speaker’s decision, which in turn might shape the social con-
text (Eckert, 2012; Coupland, 2007).

10While narrow stylistic (Section 2.2.3) and dialectal features probably overlap, dialects tend to not be con-
sidered style but a different type of language variation more closely tied to the speaker’s social background,
such as their geographic region (Biber and Conrad, 2019; Grieve et al., 2025). Nonetheless, some research-
ers have also considered dialects as a kind of social style (Coupland, 2007).
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Is style a choice? Labov (1972) was interested in a speaker’s “natural” style (also: ver-
nacular; or authentic speech in Eckert, 2003) that emerges when the speaker pays less
attention to their speech — offering “direct access to language untainted by the inter-
ference of reflection or social agency” (Eckert, 2003). Originally, Labov understood a
speaker’s vernacular as a reflection of their broad social identity, not an active choice.
He compared speech of individuals under different conditions, e.g., by asking the same
person for directions twice in NYC stores and comparing the second answer to the first
when the speaker arguably paid more attention to their speech. In more recent ap-
proaches in sociolinguistics, style has been argued to be more agentive — reflecting a
speaker’s identity but also performing and constructing it (Eckert, 2012). For example,
the development of linguistic practices of trans activists can be tied to their agency in
the creation of their own identity (Zimman, 2019). Additionally, speakers might choose
a certain style for performative function like getting attention or for persuasion (Ervin-
Tripp, 2001). More broadly, speakers might decide on a certain style to position them-
selves in their community. As mentioned above, they can make use of the indexical
field (Eckert, 2008), that is, the range of social meanings associated with a linguistic
variable. Depending on the perspective of the hearer, the linguistic variable indexes a
membership to a social group which by association leads to the indexing of character
traits stereotypically associated with members of that group. For example, the use of
the “ing” ending over the “in” ending for a verb can be interpreted as the speaker being
educated or pretentious (Campbell-Kibler, 2007; Eckert, 2008).

2.2.3. Style Operationalizations

No matter the specific definition, style is usually operationalized through patterns in
linguistic features. I give a brief overview of some narrow style features and broad style
dimensions.

Narrow style features The considered linguistic features are usually narrow phono-
logical, lexical, syntactic, orthographic or discourse features (Biber and Conrad, 2019;
Crystal and Davy, 1969; Stamatatos, 2009). See some examples in Table 2.1. U.S. Amer-
ican sociolinguistic work has often focused on investigating single phonological fea-
tures quantitatively as well as qualitatively (Labov, 1972; Bell, 1984; Eckert, 2008; Kirk,
2023). Forensic linguistics, stylistics and corpus linguistics has typically investigated
broader sets of lexical and grammatical linguistic features (Biber, 1988; Stamatatos,
2009). Influential feature operationalizations include Biber’s Multidimensional Ana-
lysis or MDA (Biber, 1988; Biber and Conrad, 2019), modern extensions of MDA (e.g.,
Grieve et al., 2011; Clarke and Grieve, 2017) and LIWC (Pennebaker et al., 2015). LIWC
and MDA consist of several dimensions or features like first person pronouns or neg-
ation or part-of-speech that can be used to quantitatively investigate patterns in lin-
guistic features. For further analysis, like investigating the communicative function of
linguistic features (Biber, 1988) or profiling authors with patterns in linguistic features
(Neal et al., 2017), the linguistic features are used in concert with statistical approaches
like dimensionality reduction with factor analysis and distance measures like Burrow’s
Delta and classifiers like SVM.
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Broader style dimensions Next to studying collections of narrow linguistic features,
researchers have also considered broader style categories or dimensions that are ar-
guably made up of distinctively patterned collections of linguistic features (Heylighen
and Dewaele, 1999; Biber, 1988). Such dimensions could be identified based on their
communicative function (e.g., involved versus informational function in Biber, 1988)
or based on external categories like the time period, the social background of speak-
ers or situational factors (Campbell-Kibler et al., 2006; Grieve et al., 2025). Generally,
such broader dimensions come with the drawback of inviting disagreement on what
an interesting dimension is and what specific style features might constitute the con-
sidered dimension. Formality is one of the most agreed upon broader dimension of
style (Hovy, 1987; Heylighen and Dewaele, 1999) but it also does not have consistent
operationalizations (Pavlick and Tetreault, 2016; Fang and Cao, 2009; Heylighen and
Dewaele, 2002). Informal style might use more contractions, interjections and idioms
or might just be recognizable with the adjective or part-of-speech frequencies. In styl-
istics or stylometry one might consider the style of a specific author or time period as
the broader style dimension of interest (Stamatatos, 2009). This allows for an opera-
tionalization of style based on a collection of documents using information-theoretic
measures (Degaetano-Ortlieb et al., 2018) or language models (Huang and Grieve,
2024). In natural language processing specifically, most work does not try to define
style but rather uses it as an umbrella term for general attributes of texts (Jin et al.,
2022) — even including attributes that are related to content like sentiment (Reif et al.,
2022). Despite the disagreements, broader style dimensions can be useful to study
and understand: For example, formality can indicate familiarity between people, and
goals in an interaction and might as a result be relevant to consider for dialog systems
(Pavlick and Tetreault, 2016; Vanderlyn and Vu, 2025). Next to formality, other common
style dimensions include simple/complex style (Flesch, 1948; Hovy, 1987; Pavlick and
Nenkova, 2015), abstract/concrete style (Semin and Fiedler, 1988), and restricted/elab-
orated style (Bernstein, 2003).
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Type Variable Examples

LEXICAL

word length e.g., average word length in Biber’s MDA, cf. Grieve (2007)
sentence length e.g., distribution of average sentence length, cf. Grieve (2007)
vocabulary rich-
ness

operationalizes vocabulary diversity with measures like type-token
ratio in Biber’s MDA, number of words occurring once, ... cf. Stamata-
tos (2009)

function words e.g., word frequency distributions of statistically determined most
common words, typically including words like “the”, “be”, “to”,
cf. Stamatatos (2009)

pronoun use e.g., word frequency distributions of first, second, ... person pro-
nouns using Biber’s MDA features or LIWC dimensions

hedge words e.g., “at about”, “something like” as hedges in Biber MDA features;
“maybe”, “perhaps” in tentative dimension in LIWC

quantifiers e.g., “each”, “all” as quantifier words or “everybody” or “anybody” as
quantifier pronouns in Biber’s MDA

...

LEXICAL

part-of-speech e.g., noun, verb, adjective, ... in Biber’s MDA
passive voice e.g., agentless passives in Biber’s MDA
subordination fea-
tures

e.g., that-relative clause vs. wh-relative clause (e.g., the dog who vs.
the dog that) in Biber’s MDA

negation e.g., “need no water’ as negative concord in Eckert (2008), “not” in
analytic negation in Biber’s MDA, negation words in LIWC

invariant be e.g., “He be working.” in Rickford and McNair-Knox (1994)
zero copula e.g., “She nice” in Rickford and McNair-Knox (1994)
...

MORPHOLOGICAL

word endings e.g., g-dropping (Campbell-Kibler, 2007), gerunds in Biber’s MDA
nominalizations e.g., ending in -tion, -ment
verb morphology e.g., be as main or auxillary verb in Biber’s MDA
...

ORTHOGRAPHIC

compression e.g., train a compression model on one text and use it to estimate how
similar in style another text is, cf. Stamatatos (2009)

character types e.g., hashtags, emojis, exclamation marks in Clarke and Grieve (2017),
uppercase character, digits in Stamatatos (2009)

character n-grams cf. Stamatatos (2009)
lengthening e.g., “cooool” in Nguyen and Grieve (2020)
number substitu-
tions

e.g., “2day” in Crystal (2008)

...

DISCOURSE
contraction use e.g., Biber’s MDA
discourse particle e.g., “well”, “now” in Biber’s MDA
...

PHONETIC

postvocalic /r/ e.g., more or less clear pronunciation of /r/ sound after vowel,
cf. (Labov, 1972)

intervocalic /t/ e.g., full or flapped voicing of /t/ between two vowel sounds making
“writer” sound like “rider” (Bell, 1984)

...

Table 2.1: Overview of narrow style operationalizations used in different fields for English. I
display specific linguistic features that have been used to operationalize linguistic style. These
have been investigated separately (Campbell-Kibler, 2009) and collectively (Biber, 1988). I cat-
egorize the linguistic features into lexical (i.e., word choice), syntactic (i.e., sentence struc-
ture), morphological (i.e., word structure and inflection), discourse (i.e., larger structure), or-
thographic (i.e., spelling and punctuation) and phonetic (i.e., pronunciation and sound pat-
terns) features. Note that the categorization into lexical, syntactic, morphological etc. are mine
and might overlap, e.g., g-dropping might also be considered an orthographic or phonological
variable and character n-grams might encode different morphemes. The relevant reference for
Biber’s MDA is Biber (1988) and for LIWC is Pennebaker et al. (2015). This table was inspired
by and partially filled with elements from the table of stylometric features in Stamatatos (2009)
and Neal et al. (2017). For further references and examples consider also Grieve (2007) and Biber
(1988).
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2.2.4. Applications of Style in Natural Language Processing

Stylistic NLP tasks Style has been considered explicitly for different tasks in NLP. The
most prominent probably being authorship attribution (Neal et al., 2017) — the task of
assigning an author to a given text based on linguistic features, and style transfer (Jin
et al., 2022) — the task of changing the style but not the referential meaning of a text
(e.g., the informal “Come and sit!” is transferred to the formal “Please consider taking a
seat.”). Authorship attribution is closely related to practical applications like the attri-
bution of disputed literary works to known authors (e.g., were essays in the Federalist
papers written by Alexander Hamilton or James Madison?), the detection of authors of
harassing or fraudulent texts (e.g., who wrote the code for malicious software) and the
detection of plagiarism (e.g., was this dissertation written by a chatbot) (Stamatatos,
2009; Arabnezhad et al., 2020; Maneriker et al., 2021; Manolache et al., 2022; Crothers
et al., 2023; Huang and Grieve, 2024). In turn, style transfer is closely related to person-
alization (Flek, 2020; Jin et al., 2022), e.g., changing a text’s style to simpler language for
non-experts. Another common task related to authorship attribution is author profil-
ing — the task of recovering author characteristics based on the text they wrote (Rangel
et al., 2013; Nguyen et al., 2013). Note, that author profiling can be useful to improve
the performance on some NLP tasks (Hovy, 2015). However, identifying an author’s
gender, age, personality type etc. has increasingly been criticized for privacy concerns
(Brennan et al., 2012; Li et al., 2018; Elazar and Goldberg, 2018; Lison et al., 2021). See
a discussion in Section 7.3.

NLG Natural language generation (NLG) systems have to fundamentally determine
what information to generate (often called the message or content) and how to gener-
ate it (the form or style) (Gatt and Krahmer, 2018). In rule-based NLG, this distinction
is usually made explicit. For example, in data-to-text pipelines — NLG systems that
convert structured data such as formulas in knowledge bases to text — separate plan-
ning stages are devoted to content (i.e., deciding what factual information to include)
and form (i.e., deciding how to express the content) (Reiter, 2025). In contrast, neural
NLG systems often handle content and style implicitly, generating a text end-to-end
without explicit planning stages for determining what and how to say something. Nev-
ertheless, or perhaps precisely because of a lack of planning (Reiter, 2025), generat-
ing texts in specific styles remains an important challenge also for neural NLG systems
(Ficler and Goldberg, 2017; Gatt and Krahmer, 2018). While early work in NLG often fo-
cused on factual correctness (Gatt and Krahmer, 2018), much recent work focuses on
how to say the same thing in different ways. An example of content-focused generation
is Winograd’s SHRDLU blocks world system (Winograd, 1972), which allowed users to
interact with a simulated “blocks world” using natural language commands like “put
the blue pyramid on the block”. In contrast, Hovy (1987) aimed to achieve different
communicative goals by choosing different styles (e.g., varying the formality) to word
the same message. Recent work in NLG on style include efforts to personalize the style
in machine translation systems (Rabinovich et al., 2017; Niu et al., 2017, 2018), control
readability in summarization (Goyal et al., 2022; Dreyer et al., 2023; Ribeiro et al., 2023)
and project personality traits in dialog systems (Mairesse and Walker, 2007; Oraby et al.,
2018) or personalize responses for individual users (Flek, 2020).
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Other uses Language models can be brittle when it comes to performance across
different styles or language varieties (Pan et al., 2022; Mizrahi et al., 2024). Para-
phrasing prompts using different stylistic features (Wahle et al., 2024), or enlarging
(post-)training datasets with (synthetic) variations have helped increase model per-
formances and make models more robust to stylistic and other language variation
(Wang et al., 2023c; Chen et al., 2024).

2.2.5. Linguistic Style in this Dissertation

In this background section, I have established that linguistic style is an ambiguous and
elusive term that has previously been conceptualized, operationalized and applied in
different ways.

In this dissertation, I use a broad conceptualization of the term linguistic style, which
I define in contrast to referential meaning (cf. Chapter 4 and Chapter 5): Linguistic
style concerns how information is expressed, rather than what is expressed. I draw
on both broad dimensions (cf. Section 2.2.3, e.g., formal vs. informal style) and nar-
row features of linguistic style (cf. Section 2.2.3, e.g., contraction vs. no contraction
use) when evaluating the sensitivity of NLP methods to linguistic style in Chapter 4. To
isolate stylistic effects, I vary these dimensions while keeping the referential meaning
approximately constant. I mainly consider the linguistic styles of individuals (Chapter
5 and Chapter 3), but also investigate variation in spelling, dialects and across registers
(Chapter 3). I assume that linguistic style is more likely to be the same for two utter-
ances written by the same author than for two utterances written by different authors
— an assumption that underlies the authorship verification approaches in Chapter 3
and Chapter 5.



Part II
Variation-Robust and

Variation-Sensitive Tasks

So far I have discussed the background of two areas of research that are central to my
dissertation: NLP methods and linguistic style. I have also explained that I aim to con-
tribute to efforts that account for language variation. In Part II of this dissertation, I
systematically introduce NLP tasks that require robustness and NLP tasks that require
sensitivity to language variation. I motivate the relevance of language variation to one
foundational building block of LLMs: tokenizers. I show that the best tokenizer varies
for tasks requiring robustness and sensitivity to language variation. Overall, language
variation might be important to consider at all stages of building LLMs.
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3
Tokenization is Sensitive to

Language Variation

This chapter is based on Wegmann, A., Nguyen, D. & Jurgens, D. (2025). Tokenization is Sens-
itive to Language Variation. In Findings of the Association for Computational Linguistics: ACL
2025 (pp. 10958—10983). https://doi.org/10.18653/v1/2025.findings-acl.572.
See a video of the conference presentation here: https://youtu.be/GnEpTTj4fc8.

Abstract

Variation in language is ubiquitous and often systematically linked to re-
gional, social, and contextual factors. Tokenizers split texts into smaller
units and might behave differently for less common linguistic forms. This
might affect downstream LLM performance differently on two types of
tasks: Tasks where the model should be robust to language variation (e.g.,
for semantic tasks like NLI, labels do not depend on whether a text uses
British or American spelling) and tasks where the model should be sensit-
ive to language variation (e.g., for form-based tasks like authorship verific-
ation, labels depend on whether a text uses British or American spelling).
We pre-train BERT base models with the popular Byte-Pair Encoding al-
gorithm to investigate how key tokenization design choices impact the
performance of downstream models: the corpus used to train the token-
izer, pre-tokenizer and the vocabulary size. We find that the best token-
izer varies on the two task types and that the pre-tokenizer has the biggest
overall impact on performance. Further, we introduce a new approach
to estimate tokenizer impact on downstream LLM performance, showing
substantial improvement over metrics like Rényi efficiency. We encourage

Author contributions: AW developed the idea, prepared the data, implemented the experiments, and wrote the manuscript.
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Tasks Robust to
Language Variation

e.g., NLI

guy learnt guitar

A man learned
an instrument.

Tasks Sensitive to
Language Variation

e.g.,
Authorship Verification

guy learnt guitar

A man learned
an instrument.

Different AuthorEntailment

Figure 3.1: Different types of tasks might profit from different tokenizer settings. We invest-
igate whether the same tokenizer performs equally well for tasks that require robustness to lan-
guage variation (i.e., semantic-focused tasks like NLI) and for tasks that require sensitivity to
language variation (i.e., form-focused tasks like authorship verification). Intuitively, one needs
to look at semantic signals (e.g., “guitar” and “instrument”) for NLI and at form- or style-based
signals (e.g., “learned” and “learnt”) for Authorship Verification.

more work on language variation and its relation to tokenizers and thus
LLM performance.

3.1. Introduction

Variation in language is ubiquitous, manifesting in forms such as lexical variation (e.g.,
vocabulary choice like “lift” vs. “elevator”), spelling variation (e.g., spelling “u” instead
of “you”), and syntactic variation (e.g., word order like “I gave her the ball.” and “I gave
the ball to her.”). Such variation is often systematic rather than random, and is linked
to regional, social, and contextual factors (Nguyen et al., 2016; Coupland, 2007; Eckert,
2012).

Tokenizers break up input strings and determine the tokens that are fed into language
models. Tokenizers build their vocabulary based on a fitting corpus and have a given
vocabulary size. A pre-tokenizer can prioritize or prevent the creation of certain tokens
(cf. Section 3.3.2). Depending on these settings, tokenizers might behave differently for
linguistic forms that are less common (see Section 3.3). For example, spelling variants
of common words can be split into more tokens than their standard spelling (Mat-
thews et al., 2024), e.g., “doing” might be one token, while “doin” might be split into
“do” and “in”. As a result, LLMs might need to learn to recompose such spellings to
represent their meaning, suffering in performance compared to representing words
as one token. In contrast, smaller tokens could be useful for recognizing form-based
patterns (e.g., distinguish the “in” from the “ing” ending). We ask RQ1: Do the same
tokenizer settings (i.e., fitting corpus, vocabulary size and pre-tokenizer) perform well
for two types of downstream tasks: Tasks whose gold labels are robust to language vari-
ation (e.g., tasks that involve analyzing the semantic meaning of texts like NLI) and
tasks whose gold labels are sensitive to language variation (e.g., tasks centered around



3.1. Introduction

II

33

Example Label

GLUE How do I hire an ethical hacker? Where
can I find ethical hackers?

duplicate

+typo Wher’re cacn I fien ethical hackprs?
Hjw fo I hie an ehtical hacker?

duplicate

+dialect How do I hire me an ethical hacker?
Where can I find me ethical hackers?

duplicate

(a) Tasks requiring robustness to language variation.

Dataset Task

AV Authorship Verification
PAN Author Change Classi-

fication
CORE Register Classification
NUCLE Error Classification
Dialect Dialect Classification

(b) Tasks requiring sensitivity to language
variation.

Table 3.1: Evaluation Tasks. We evaluate tokenizers on tasks that require (a) robustness and
(b) sensitivity to language variation. For (a), we use GLUE tasks, adding spelling perturbations
using Wang et al. (2021) and dialect perturbations using Ziems et al. (2023). Examples are taken
from QQP. For (b) we use a newly compiled selection of tasks containing our own authorship
verification dataset, an author change classification dataset (Bevendorff et al., 2024), a register
classification dataset (Laippala et al., 2023), a grammatical error correction dataset (Dahlmeier
et al., 2013) and a dialect classification dataset generated with Ziems et al. (2023).

the form, style or language variety of texts like authorship verification and dialect clas-
sification)? For example, for semantic tasks like NLI, models should perform equally
well, regardless of whether the text is written in Standard American English or African
American English. In contrast, for form-based tasks like authorship verification (i.e.,
are two texts written by the same author?), models should be able to distinguish Brit-
ish and American spelling. Intuitively a model needs to use different signals (see Fig-
ure 3.1) to solve tasks requiring robustness and tasks requiring sensitivity to language
variation, and might thus profit from different tokenizer settings. We test this by pre-
training BERT base models (Devlin et al., 2019) with different tokenizer settings of the
de-facto standard tokenizer: Byte-Pair Encoding or BPE (Sennrich et al., 2016).

The evaluation of tokenizers with fast proxy measures — usually based on how effect-
ively a tokenizer compresses a reference corpus — offers a popular and cheaper al-
ternative to training larger LMs for comparing different tokenizers. However, common
proxy measures do not consistently achieve a high correlation with downstream per-
formance (Zouhar et al., 2023; Cognetta et al., 2024; Schmidt et al., 2024). One reason
could be that such measures are task-agnostic: They predict the same performance for
a given downstream corpus, regardless of task or label differences (e.g., in Figure 3.1,
NLI and authorship verification have different labels for the same sentence pair). We
therefore investigate RQ2: Can simple task-aware measures based on logistic regression
better predict tokenizer downstream performance on variation-robust and variation-
sensitive tasks than the common task-agnostic measures Rényi Efficiency and Corpus
Token Count?

Contributions We make the following three contributions: (1) We provide our code
and a selection of English tasks (see Table 3.1) to evaluate models on tasks requiring
sensitivity and robustness to language variation.1 (2) We find that the impact of token-
izers on downstream performance varies depending on whether a task requires robust-

1https://github.com/nlpsoc/Tokenization-Language-Variation
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ness or sensitivity to language variation, and that the pre-tokenizer has the biggest in-
fluence on downstream performance across task types. However, aggregated perform-
ance differences remain small and highlight the need for future work to investigate
different types of language variation individually. (3) Further, we find that logistic re-
gression performance has a higher correlation with BERT downstream performance
than metrics like Corpus Token Count or Rényi efficiency (Zouhar et al., 2023). We
provide practical suggestions to evaluate and build better tokenizers. With this work,
we hope to encourage more work on language variation and its relation to tokenizers
to build better, fairer and more robust LLMs from the ground up.

3.2. Related Work

Next to Byte-Pair Encoding (Sennrich et al., 2016), there exist several other subword
(and other) tokenizers (Mielke et al., 2021). For example, character and byte-based
tokenizers have been argued to be more robust to spelling variations (Mielke et al.,
2021; Libovický et al., 2022; Xue et al., 2022). In this study we focus on BPE as it has been
the most common tokenization algorithm in recent LLMs (e.g., LLAMA 3, MIXTRAL,
DEEPSEEK V3 and GPT-4).

There is no universally agreed-upon standard to evaluate tokenizers. Tokenizers have
been evaluated intrinsically (i.e., without training LLMs) and extrinsically (i.e., con-
sidering the performance of larger LMs pre-trained with the considered tokenizer).
Common intrinsic methods include: the average number of subwords produced per
word and correlated measures like Corpus Token Count (Rust et al., 2021; Scao et al.,
2022; Ali et al., 2024; Gallé, 2019; Schmidt et al., 2024), information theoretic meas-
ures like Shannon Entropy or Rényi efficiency (Zouhar et al., 2023) and morphological
alignment (Gow-Smith et al., 2022; Uzan et al., 2024). Extrinsic measures include LM
perplexity (Shliazhko et al., 2024; Zevallos and Bel, 2023; Gowda and May, 2020), cross-
entropy loss (Rajaraman et al., 2024), computational training cost (Ali et al., 2024) and
downstream task performances (Schmidt et al., 2024; Ali et al., 2024). It is computa-
tionally infeasible to train SOTA LLMs end-to-end for each version of the tokenizer one
wants to evaluate. Recent work tackled this by training “smaller” generative language
models with 350M–2.5B parameters for each tokenizer (Schmidt et al., 2024; Ali et al.,
2024). However, even such smaller models still can take several days to train. We meas-
ure downstream task performance on models with 110M parameters taking less than
15 GPU hours to train per model.

Tokenizer algorithms and settings can affect a LLM’s performance, for example, on
tasks including numbers like arithmetic (Thawani et al., 2021; Wallace et al., 2019), on
tasks including domain specific vocabulary or jargon like coding or medicine (Gu et al.,
2021; Dehaerne et al., 2022; Zan et al., 2023), on different scripts and languages (Petrov
et al., 2023; Rust et al., 2021; Limisiewicz et al., 2023; Ahia et al., 2023; Velayuthan and
Sarveswaran, 2025) and when translating between languages (Gallé, 2019; Libovický
et al., 2022; Zhang et al., 2022). To the best of our knowledge monolingual tokenizers
have been underinvestigated in relation to language variation. Monolingual tokenizers
and tokenizer settings have recently been investigated on broader selections of NLU
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tasks (Schmidt et al., 2024; Ali et al., 2024), presumably with the underlying assump-
tion that for a given language like English, there exists a best tokenizer for most, if not
all, tasks. We investigate this assumption for two systematically different types of tasks:
tasks requiring robustness and tasks requiring sensitivity to language variation.

3.3. Tokenizer Settings

Tokenizers break up texts into smaller units. These units are fed into the language
model as input. We investigate different variations of the most popular tokenization
algorithm: Byte-Pair Encoding or BPE (Sennrich et al., 2016). BPE is a subword token-
ization algorithm (i.e., it breaks rare words down into subwords, bottoming out in bytes
in the worst case2). The vocabulary is built iteratively: It starts out with a base vocab-
ulary of distinct bytes and merges them based on token frequency in the fitting corpus
until the desired vocabulary size is reached. We vary the algorithm on three paramet-
ers: (1) the vocabulary size, (2) the pre-tokenizer and (3) the fitting corpus.

3.3.1. Vocabulary Size

Common vocabulary sizes range from 30k to 64k in monolingual models, to about 128k
(LLAMA 3) and 200k (GPT-4O) in recent multilingual models. To the best of our know-
ledge, previous work on tokenizer vocabulary size mostly tested mid-range vocabulary
sizes between 32k and 100k on NLU tasks, finding only small differences in perform-
ance between vocabulary sizes (Ali et al., 2024; Schmidt et al., 2024). However, vocabu-
lary size might still play a role when dealing with language variation. When using mid-
range vocabulary sizes, less common words or spelling variants might not be repres-
ented with one token anymore, influencing a word’s position in the embedding space
(Matthews et al., 2024). Character-based models like ByT5 show better robustness to
spelling variation than subword models with larger vocabulary sizes (Libovický et al.,
2022; Xue et al., 2022; Tay et al., 2022). Similarly, tokenizers using low-range (in the
extreme case character-level) vocabulary sizes might be more robust to spelling vari-
ation, as, for example, swapping of characters will not drastically alter the character-
based segmentation of a word. We experiment with the following vocabulary sizes: 500
and 4k (low-range vocabulary size), 32k and 64k (mid-range vocabulary size) and 128k
(high-range vocabulary size).

3.3.2. Pre-Tokenizer

Pre-tokenizers split the fitting corpus into word-like units (Mielke et al., 2021), so-
called “pre-tokens” (e.g., “I’m fine.” → “I”, “’m”, “fine”, “.”) which are then further
tokenized independently. That is, in building its vocabulary, the BPE algorithm can-
not merge tokens that cross pre-token boundaries (e.g., “I’m”). Pre-tokenizers are
usually expressed with regular expressions that include hard-coded knowledge about
a language or script (Velayuthan and Sarveswaran, 2025), e.g., whitespaces separate
words in Latin script and “’m” is a contraction in English. The most common English

2adapted from “rare words are broken down into a collection of subword units, bottoming out in characters
in the worst case.” in Bostrom and Durrett (2020)
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pre-tokenizers are more or less elaborate variations of splitting texts based on white-
spaces. For example, GPT-2’s pre-tokenizer additionally separates different Unicode
Character Categories (e.g., letters, numbers and punctuation) but leaves single leading
whitespaces attached to words (Radford et al., 2019).

Pre-tokenizers influence compression effectiveness (Radford et al., 2019), NLU down-
stream (Schmidt et al., 2024) and arithmetic performance.3 However, pre-tokenizers
have not been investigated for tasks that require sensitivity to language variation. Pre-
tokenizers might play a role for words that merge Unicode Character Categories, for
example, when letters are substituted with numbers (e.g., “2day” or “c000l”, see Eger
et al. (2019) for more). If a pre-tokenizer generally splits off numbers and letters, such
words can never become part of the vocabulary. Further, not splitting on whitespace
might better represent syntactic variation by including frequent phrases like “of the”.
Frequent compositional phrases are processed faster by humans (Arnon and Snider,
2010), and building tokenizers that align closer to such cognitive processes (e.g., Yang
et al., 2020) might also be beneficial for semantic tasks.

We compare five different pre-tokenizers: (a) not using a pre-tokenizer (NO), (b) isol-
ating whitespaces (WS), (c) leaving single whitespaces attached to words (_WS), (d)
LLAMA 3’s pre-tokenizer (LLAMA3) and (e) GPT-2’s widely used pre-tokenizer (GPT2).
LLAMA3 and GPT2 can be understood as extensions of the _WS pre-tokenizer. Among
others, the LLAMA3 pre-tokenizer splits off Unicode Character Categories (e.g., punc-
tuation) but leaves one leading non-letter character attached to letters (e.g., ’m). The
GPT2 pre-tokenizer is similar to LLAMA3, but separates Unicode Character Categories
more. See Appendix A.1.2 for the regular expressions describing the WS, _WS, LLAMA3
and GPT2 pre-tokenizer.

3.3.3. Fitting Corpus

Sub-word tokenizers construct their vocabulary based on a fitting corpus, adding
tokens based on the distribution of tokens in that corpus. Lexical, morphological and
spelling variation are all intuitively connected to the fitting corpus. If a fitting cor-
pus does not show a variation, it can never be part of a single token in the vocabu-
lary.

We sampled fitting corpora with a size of approximately 1.5 billion words. PubMed was
randomly sampled from The Pile’s PubMed Abstracts (Gao et al., 2020). The PubMed
Abstracts consist of 30M abstracts from biomedical articles. Wikipedia was randomly
sampled from Wikipedia articles from a snapshot from June 1st, 2023 after the plain
text of articles was extracted.4 Twitter was sampled from the Decahose Twitter stream5

throughout the year 2021, with queries on almost every day of the year 2021. We only
select English tweets based on Twitter’s internal language identification system. We
exclude retweets. Miscellaneous was sampled from a variety of domains with no over-
lap with the other fitting corpora. It includes Reddit, literature sources (fanfictions
and books), news articles and comments, question answering websites, reviews, mails,

3right-to-left pre-tokenization of numbers improved arithmetic for LLAMA 3, see bluesky.
4using https://github.com/LorcanJConnolly/WikiTextExtractor.
5Decahose provided access to 10% of real time tweets sampled by Twitter.

https://bsky.app/profile/thomwolf.bsky.social/post/3lbougdpo3c2q
https://github.com/LorcanJConnolly/WikiTextExtractor
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transcripts, blogs, Common Crawl, scientific articles, code and mathematical formu-
las. See details in Appendix A.1.1.

We expect the fitting corpora to differ in the lexical, syntactic and lexical variation they
exhibit. For example, PubMed probably contains less spelling and lexical variation
than Twitter. Intuitively, a tokenizer constructed on PubMed should thus be less cap-
able in representing stylistic variation than one constructed on Twitter. However, it
remains unclear how important the fitting corpus composition is. Zhang et al. (2022)
investigate different compositions of the fitting corpus in the multilingual setting. They
find a surprising robustness to language imbalance in the fitting corpus for languages
sharing the same script.

3.4. Evaluation Tasks

We compare tokenizers on classification tasks that require robustness to language
variation (Section 3.4.1) and tasks that require sensitivity to language variation (Sec-
tion 3.4.2). Models solving these two types of tasks should need to make use of more
semantic and form-based signals respectively and might have different requirements
for a tokenizer (cf. Figure 3.1). We select tasks that strike a balance between being suffi-
ciently challenging and staying within the capabilities of our pre-trained BERT models.
See an overview in Table 3.1.

3.4.1. Tasks Robust to Language Variation

First, we evaluate tokenizers on tasks where the gold label is robust to language vari-
ation. We use GLUE (Wang et al., 2018), a standard NLP benchmark that was also used
to evaluate BERT at its introduction Devlin et al. (2019), and is within the capabilit-
ies of our pre-trained BERT models. We compare tokenizers on the following four
GLUE tasks: SST-2 (sentiment classification), QQP (paraphrase classification), MNLI
and QNLI (NLI tasks). For details on our task selection see Appendix A.2.1. Ideally, a ro-
bust tokenizer performs consistently across all versions of GLUE: the original, primar-
ily written in Standard American English, the spelling-transformed GLUE+typo and
the dialect-transformed GLUE+dialect.

GLUE+typo We use textflint (Wang et al., 2021) to introduce simulated typos and
spelling errors to our tasks, similar to Libovický et al. (2022). It uses random character
swapping and a list of common spelling errors.

GLUE+dialect We use Multi-VALUE (Ziems et al., 2023) to introduce simulated dia-
lectal variation to our GLUE tasks. Multi-VALUE makes use of 189 dialectal perturb-
ation rules (Ziems et al., 2023) operationalized based off of eWAVE (Kortmann et al.,
2020). For each example in the GLUE tasks, we randomly choose between transform-
ations to Appalachian English, Chicano English, Colloquial Singapore English, Indian
English and Urban African American English dialects.
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3.4.2. Tasks Sensitive to Language Variation

Second, we evaluate tokenizers on tasks that are sensitive to language variation. The
gold label for such tasks should be sensitive to stylistic or form-based signals.

AV Models performing authorship verification (i.e., are two texts were written by
the same author?) usually need to be sensitive to different styles and forms used by
different authors (Zhu and Jurgens, 2021; Wegmann et al., 2022; Wang et al., 2023a).
Past work has found authorship verification to be sensitive to tokenization, with sig-
nificant gaps between the BERT and ROBERTA tokenizers (Zhu and Jurgens, 2021).
Therefore, we curate a new authorship verification dataset of 40.8k train, 2.5k dev and
4.8k test pairs of texts from different domains, similar in distribution to the Miscel-
laneous corpus (cf. Section 3.3). Labels are balanced in the test set. See details in Ap-
pendix A.2.2.

PAN We use the PAN 2024 Multi-Author Writing Style Analysis task to predict whether
an author shift occurs between two consecutive paragraphs extracted from Reddit
(Bevendorff et al., 2024). Specifically, we use the ‘hard’ task, where paragraphs are
about the same topic. We sample such that labels are balanced. This results in a train-
ing set of 18k and a dev set of 4k instances.

NUCLE We use the NUCLE 3.3 corpus (Dahlmeier et al., 2013) for multi-label classi-
fication of the errors that were made by English learners in a given sentence. NUCLE
was annotated by professional English instructors for 27 error types (e.g., verb tense
or article use). It includes 22k unique sentences with errors. We add a sample of 5k
error-free sentences from the same dataset. We split it into a train (80%) and dev (10%)
set.

CORE We use the Corpus of Online Registers of English (Laippala et al., 2023) for
register classification. Register is one of the most important factors associated with
linguistic variation (Biber, 2012). We use 8 main register labels (e.g., spoken or inform-
ational description) for multi-class prediction. To increase the occurence of rarer la-
bels, we split long texts and reach a train size of 30k and a dev size of 5k. See Appendix
A.2.2 for details.

Dialect We randomly sample 60k instances from GLUE-dialect (Section 3.4.1) and
the original GLUE task, to create a dialect classification task for five dialects and Stand-
ard American English in the original GLUE texts. We use 50k texts for the train and 5k
for the dev set.

3.5. Modeling

For each investigated tokenizer (cf. Section 3.3), we pre-train three BERT models with
different seeds. We use encoder instead of decoder models, as encoder models tend
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to reach higher performance for classification tasks for low parameter settings. This
allows us to train models using fewer GPU hours.

Pretraining BERT models We experiment with pre-training tiny BERT models using
a token count T close to 3300M that is exponentially bigger than the 4.6M parameters P,
similar to the ratio in the original BERT papers Devlin et al. (2019); Turc et al. (2019).
However, we find that for the same compute, using a bigger model size P and less
tokens T improves the training loss. Chinchilla’s scaling law might also hold for smal-
ler encoder models, specifically optimal parameter count could scale with the token
size for a fixed compute POPT ≈ T 23/27 (Hoffmann et al., 2024). For the remainder of
this work, we use the base BERT model architecture with 110M parameters, initialize
all weights randomly and pre-train on 750M tokens sampled in sequences of 512 from
the Miscellaneous corpus (Section 3.3.3) and use a batch size of 32 and 45k steps. For
further details and hyperparameters, see Appendix A.3.

Fine-tuning BERT Unless otherwise specified, we use 3 epochs, a max sequence
length of 128, a batch size of 32 and a learning rate of 2e-5 to perform the classifica-
tion tasks. We evaluate on the dev set for GLUE. For comparability, we use the same
setup for tasks requiring sensitivity to language variation. Only for the authorship veri-
fication task we use a contrastive training setup, then use the dev set to find an optimal
cosine similarity threshold and calculate accuracy on the test set.

3.6. Results

We show the performance of fine-tuned BERT models on tasks that require robustness
to language variation in Table 3.2 and tasks that require sensitivity to language vari-
ation in Table 3.3. When we investigate a specific setting (e.g., the fitting corpus in first
three rows in Table 3.3), we only change that setting and leave the other at their “de-
fault settings” to ensure comparability and isolate the effect of each individual setting
without exhaustive testing of all possible combinations. We use the following default
values for the three settings: the miscellaneous fitting corpus, the GPT2 pre-tokenizer
and a vocabulary size of 32k.

Note that the performance differences averaged over three seeds tend to be relat-
ively small, which is consistent with previous work comparing different tokenizer al-
gorithms on downstream tasks (Ali et al., 2024; Schmidt et al., 2024). To ensure sig-
nificance, we compute the pairwise McNemar, 1947’s test for the pre-tokenizer, fit-
ting corpus and vocabulary size settings, see Figure 3.2. For the significance testing,
we consider classifications by models with the same settings but different seeds to be
stemming from the same rater. We use the Bonferroni correction (Dunn, 1961) for our
total of 26 tests.

RQ1: Tokenizer settings perform differently on tasks robust and sensitive to lan-
guage variation Overall, tasks sensitive to language variation profit more from
tokenizers that encode more variation through a larger vocabulary size (§3.6.3).
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Model orig +typo +dialect AVG

PubMed 80.8 ± 0.0 69.1 ± 0.2 78.6 ± 0.2 76.2 ± 0.0
Fitting Corpus Wikipedia 80.7 ± 0.3 68.6 ± 0.2 79.3 ± 0.2 76.2 ± 0.2

Twitter 81.1 ± 0.0 69.1 ± 0.5 78.8 ± 0.1 76.4 ± 0.2

NO 72.1 ± 1.0 61.6 ± 0.1 70.1 ± 0.3 67.9 ± 0.3
WS 80.8 ± 0.4 68.2 ± 0.3 79.3 ± 0.3 76.1 ± 0.3

Pre-Tokenizer _WS 80.8 ± 0.3 68.9 ± 0.1 79.0 ± 0.2 76.2 ± 0.1
LLAMA3 80.9 ± 0.1 68.2 ± 0.2 79.0 ± 0.0 76.1 ± 0.0
GPT2 81.3 ± 0.4 68.2 ± 0.2 79.2 ± 0.4 76.2 ± 0.3

500 77.2 ± 2.5 70.3 ± 2.6 75.6 ± 2.0 74.4 ± 2.4
4k 80.5 ± 0.8 70.3 ± 0.9 78.6 ± 0.8 76.4 ± 0.8

Vocabulary Size 32k 81.3 ± 0.4 68.2 ± 0.2 79.2 ± 0.4 76.2 ± 0.3
64k 80.8 ± 0.4 67.6 ± 0.6 79.2 ± 0.2 75.9 ± 0.4
128k 78.7 ± 2.0 64.6 ± 1.9 76.1 ± 2.6 73.1 ± 2.2

Table 3.2: Performance on tasks requiring robustness to language variation. We display BERT
performances, averaged on the original four GLUE tasks and their perturbations using spelling
mistakes (+typo) and dialectal transformations (+dialect).We provide the mean and standard
deviation (±) over three seeds respectively. We boldface the best performances for each column
and investigated setting. For the averaging column (AVG), italics indicate tokenizers with no
statistically significant difference from the best-performing tokenizer (cf. Figure 3.2).

Note that the best-performing tokenizer settings are not always consistent across
the individual variation-robust and variation-sensitive tasks (e.g., vocabulary size for
GLUE+typo and GLUE in Table 3.2). We suspect that this is due to differences in the
types of language variation present in the specific task datasets (e.g., character-level
tokens seem to be more robust to spelling variation). Future work could investig-
ate different types of language variation individually (e.g., spelling vs. lexical vari-
ation).

3.6.1. Pre-Tokenizers

Pre-tokenizers have the greatest influence on performance For both task types, the
range of performance values is largest for pre-tokenizers, second largest for vocabulary
size and smallest for fitting corpus. This is surprising as, to the best of our knowledge,
pre-tokenizers have received the least attention in previous work. For both task types,
using pre-tokenizers improves performance over using no pre-tokenizer.

Pre-tokenizer performance differs more between individual tasks than between
task types. For both task types, _WS is among the best performing pre-tokenizers.
Combining leading whitespaces with letters (_WS) generally improved performance
over isolating whitespaces (WS). For dialect and spelling-transformed GLUE, CORE,
NUCLE and Dialect, the whitespace-based pre-tokenizers _WS and WS perform the
best. For AV, PAN and the original GLUE tasks, GPT2 and LLAMA3 perform better. Tasks
like grammatical error detection (NUCLE) could be seen as identifying deviations from
a standard, and might benefit from pre-tokenizers that include tokens with typical
combinations of Unicode Character Categories. One of their main differences of GPT2
and LLAMA3 the whitespace-based pre-tokenizers is that the combination of different
Unicode Character Categories (e.g., punctuation and letters) within the same token is
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Model AV (acc) PAN (acc) CORE (acc) NUCLE (F1) DIALECT (F1) AVG

PubMed 81.7 ± 0.1 65.2 ± 0.5 55.9 ± 0.6 21.8 ± 1.2 87.9 ± 0.1 62.5 ± 0.4
Corpus Wiki 81.9 ± 0.1 65.5 ± 0.5 55.5 ± 0.6 23.5 ± 0.2 88.9 ± 0.5 63.1 ± 0.2

Twitter 82.9 ± 0.6 66.7 ± 0.4 56.5 ± 0.6 21.4 ± 0.9 88.3 ± 0.2 63.2 ± 0.2

NO 81.8 ± 0.3 59.9 ± 1.0 51.7 ± 0.2 16.3 ± 0.2 77.3 ± 0.2 57.4 ± 0.2
WS 75.5 ± 0.9 66.1 ± 0.4 55.1 ± 0.9 23.0 ± 0.1 88.8 ± 0.2 61.7 ± 0.3

Pre-Tok. _WS 82.5 ± 0.3 66.3 ± 1.6 56.6 ± 0.7 22.6 ± 0.5 88.4 ± 0.2 63.3 ± 0.3
LLAMA3 82.5 ± 0.2 66.9 ± 0.6 56.5 ± 0.6 21.1 ± 1.2 88.6 ± 0.0 63.1 ± 0.3
GPT2 82.6 ± 0.5 66.6 ± 1.2 56.3 ± 1.2 21.8 ± 0.9 88.4 ± 0.6 63.1 ± 0.4

500 78.2 ± 0.9 62.6 ± 0.2 51.1 ± 0.6 13.1 ± 0.9 85.6 ± 0.4 58.1 ± 0.6
4k 81.9 ± 0.1 67.8 ± 0.6 55.1 ± 1.0 17.4 ± 2.8 87.9 ± 0.7 62.0 ± 0.6

Size 32k 82.6 ± 0.5 66.6 ± 1.2 56.3 ± 1.2 21.8 ± 0.9 88.4 ± 0.6 63.1 ± 0.4
64k 82.7 ± 0.4 67.2 ± 0.7 54.9 ± 1.5 22.0 ± 1.1 88.1 ± 0.6 63.0 ± 0.6
128k 80.1 ± 2.2 62.4 ± 3.4 51.2 ± 2.2 19.0 ± 2.7 81.5 ± 5.1 58.9 ± 3.0

Table 3.3: Performance on tasks requiring sensitivity to language variation. We display BERT
performances on our Authorship Verification (AV), the PAN, the CORE, and the multi-Dialect
dataset. We provide the mean and standard deviation (±) over three seeds respectively. For the
averaging column (AVG), italics indicate tokenizers with no statistically significant difference
from the best-performing tokenizer (cf. Figure 3.2).

less often allowed. By preventing combinations of categories like punctuation and let-
ters, the vocabulary of GPT2 can include a broader range of tokens that only consist of
letters, e.g., “_queer” in Table 3.4. This could explain the better average performance
of GPT2 on the original GLUE task.In contrast, LLAMA3 also allows the mixing of one
initial punctuation mark with letters, e.g., including “’all” in Table 3.4, seems to espe-
cially help LLAMA3 solve PAN. Future work could investigate different individual tasks
and the influence of pre-tokenizers individually.

3.6.2. Fitting Corpus

On tasks requiring sensitivity to language variation, Twitter performs best This
aligns with our expectation that the Twitter corpus include more spelling variation and
a larger set of language varieties than PubMed and Wikipedia. Interestingly, Wikipe-
dia performs the best on NUCLE and DIALECT. Grammatical error detection (NUCLE)
could be seen as identifying deviations from a standard, and might benefit from train-
ing on corpora with few grammatical errors — like Wikipedia.

On tasks requiring robustness to language variation, Twitter performs surpris-
ingly well Interestingly, Twitter performs indistinguishably from other fitting cor-
pora on tasks that require robustness to language variation. Originally, we expected
a more standardized corpus like Wikipedia to perform better, as it should lead to less
spelling variation and thus more “full words” in the vocabulary (e.g., “precursor” in
Table 3.4).

3.6.3. Vocabulary Size

A larger vocabulary size might be useful for tasks requiring sensitivity to language
variation Performance peaked at 4k for tasks requiring robustness to language vari-
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Figure 3.2: Pairwise significance testing of models. We use pairwise McNemar (1947)’s test to
test whether there is a significant difference between classifications done by models trained with
different tokenizers on the tasks requiring robustness to language variation (first row) and tasks
requiring sensitivity to language variation (second row). Tokenizers are sorted by mean perform-
ance. Blue colors show statistical significance, while pink colors are above the 0.05 threshold.

ation and at 32k for tasks requiring sensitivity to language variation. It seems that a
smaller vocabulary size is sufficient to learn common standard forms and more tokens
are needed to include style and form variations. For example, “jumper” is only in-
cluded with vocabulary size 64k, see Table 3.4. Note that optimal vocabulary sizes
might scale with model size (Tao et al., 2024). For both task types, the standard de-
viation is highest for the smallest (500) and the largest vocabulary size (128k).

Smaller vocabulary is more robust to spelling variation The vocabulary size of 500
consistently performs worse than larger vocabulary sizes. It seems that BERT struggles
with long input sequences and learning to compose words for small vocabulary sizes.
An exception is the GLUE+typo task, where the tokenizer of size 500 performs best.
This is consistent with character-based tokenizers being more robust to spelling vari-
ation (cf. Section 3.3.1).

3.7. Pre-evaluating Downstream Tokenizer Impact

A popular alternative to training several LLMs to evaluate tokenizers is using fast in-
trinsic measures on the token distribution on the downstream task corpus. However,
common intrinsic measures are not consistently correlated with downstream perform-
ance (Rust et al., 2021; Zouhar et al., 2023; Schmidt et al., 2024). Further, they do not
make use of task labels and can thus be considered task agnostic. Imagine a corpus
on which you want to perform both, a task requiring robustness to language variation
and a task requiring sensitivity to language variation (cf. Figure 3.1). Task-agnostic in-
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Group Choice Examples of tokens

Wiki _queer _precursor _l ma o
Fitting Corpus Twitter _queer _prec urs or _lmao

PubMed _qu e er _precursor _l ma o

NO _ y’all_ que er_ b 4
WS _ y’all _ que er _ b4

Pre-Tokenizer _WS _y’all _que er _b 4
LLAMA3 _y ’all _que er _b 4
GPT2 _y ’ all _queer _b 4

500 _t e h _l g b t q i a + _j um p er
4k _te h _l g bt q ia + _j um per

Vocabulary Size 32k _te h _l g bt q ia + _j umper
64k _teh _lg bt q ia + _jumper
128k _teh _lgbt q ia + _jumper

Table 3.4: Examples of Vocabulary Differences. We display examples of sequences tokenized
by tokenizers with varying fitting corpora, pre-tokenizers and vocabulary size. We represent
whitespaces within tokens as _. The domain of the fitting corpus affects the set of unique words
in the vocabulary (e.g., “queer” is part of Twitter but not PubMed). The size determines the num-
ber of “rarer” words in the fitting corpus that are added to the vocabulary (e.g., the British variant
“jumper” of “sweater” is only added with size 64k). The pre-tokenizer determines what types of
words can be part of the vocabulary (e.g., “b4” can not be part of GPT2 and LLAMA3). Note that
allowing less Unicode Character Category combinations (e.g., numbers and letters) increases the
broadness of the vocabulary (e.g., GPT2 allows for less combinations than other pre-tokenizers
and is the only one including “queer” in its vocabulary).

trinsic measures like Rényi efficiency and Corpus Token Count will always predict the
same performance for both tasks. However, we found that the type of task can have an
influence on what tokenizer settings work better (cf. Section 3.6). We experiment with
a task-dependent measure: the performance6 of logistic regression with task labels as
the dependent variable.

Logistic regression We tokenize the task texts. Then, we use the resulting tokens as
features for logistic regression. We use a bag-of-tokens approach and do not consider
word order. We do not consider frequency but use binary information on token pres-
ence. We use Cartesian products of tokens for NLI tasks. Specifically, given two sen-
tences in an NLI setting, we generate all possible combinations of individual tokens
from both sentences and use these as features. For PAN and Authorship Verification,
we limit the Cartesian product to tokens that appear in both sentences and tokens that
only appear in one sentence.7 For multi-classification and multi-label task we train
separate one-vs-rest logistic regression models. We use l1-regularization with C=0.4.
Note that one could probably increase logistic regression performance by tuning para-
meters and features more specifically to the investigated tasks.

6We use the same F1 and accuracy performance metrics as for BERT.
7PAN and AV had considerably longer texts than the GLUE NLI tasks leading to otherwise too many features.
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Measure Robust Sensitive

Rényi Efficiency -.22 -.03
Corpus Token Count -.45 .37
logistic regression .85 .84

Table 3.5: Correlation of Intrinsic Measures with BERT Performances. Correlations between
the Rényi Efficiency (α= 2.5), Corpus Token Count, and logistic regression predictions with the
performance of the finetuned BERT models on the tasks robust to language variation and the
tasks sensitive to language variation respectively. Logistic regression has the highest correlation
values across all tasks. A higher Corpus Token Count is negatively correlated with performance
on tasks robust to language variation and positively correlated with tasks sensitive to language
variation.

3.7.1. Results

We display the Pearson correlation of Rényi efficiency, Corpus Token Count and logistic
regression performances with the fine-tuned BERT performances in Table 3.5. Similar
to Schmidt et al. (2024) we find a light negative correlation of LM performances with
Rényi efficiency on NLU tasks.

Corpus token count has a negative correlation for tasks requiring robustness and
a positive correlation for tasks requiring sensitivity to language variation. Corpus
Token Count and correlated measures are often used to assess the compression effect-
iveness of a tokenizer on a reference corpus or downstream task. A higher value entails
more tokens in the corpus and thus less effective compression. More effective com-
pression is commonly believed to be a sign of a better tokenizer, and has often been
thought to be correlated with better downstream performance (Rust et al., 2021; Ali
et al., 2024; Velayuthan and Sarveswaran, 2025). We show that the correlation is flipped
for tasks that are robust and sensitive to language variation highlighting the difference
in tokenizer requirements for the two task types.

RQ2: Logistic regression correlates with downstream performance Among the
three considered measures, we find the highest correlation between logistic regression
performances and BERT performances. Additionally, logistic regression is similarly
correlated for both task types and can compare tokenizers of varying vocabulary sizes,
which is not possible with Rényi efficiency and Corpus Token Count (for details refer to
Appendix A.4). Note that we by no means question the usefulness of measures like Cor-
pus Token Count or Rényi efficiency for assessing different tokenizers and what they
do. However, they might be less suited to estimate downstream performance without
additional modifications.

3.8. Conclusion

In this work, we investigated tokenizer settings for tasks that require robustness and
tasks that require sensitivity to language variation. BPE settings perform differently on
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the two task types. We make three practical suggestions for selecting tokenizer settings:
(1) Pay the most attention to the pre-tokenizer. It influences how Unicode Character
Categories can be combined (e.g., “b4” in Table 3.4), and what words can ultimately
be part of the vocabulary (e.g., “_queer” in Table 3.4). (2) Choose a bigger vocabulary
size for settings that require sensitivity to language variation. (3) Use a small machine
learning classifier — e.g., a logistic regression classifier — to evaluate how different
tokenizers affect performance on tasks in your domain. For example, for general-
purpose language models, pick a tokenizer that this model consistently predicts to
perform well across both variation-robust and variation-sensitive tasks. Tokenizer set-
tings seem to perform differently on tasks that are robust and tasks that are sensitive
to language variation. But tokenizers might also be sensitive to what types of language
variation (e.g., lexical vs. syntactic) are present. We think it is crucial to investigate dif-
ferent types of language variation individually in future work to ultimately build better,
fairer and more robust LLMs.

Limitations

Note that our taxonomy of tasks relies on splitting tasks into semantic-focused tasks
(i.e., considering what is said) and form-based tasks (i.e., considering how it is said).
However, a strict distinction is challenging since most tasks are best solved using a mix-
ture of typical content and typical form signals. For example, recognizing the length-
ening of words (e.g., “cooool”) can be helpful for the semantic task of sentiment clas-
sification (Brody and Diakopoulos, 2011) and content information (e.g., the topic) can
improve authorship verification performance (Wegmann et al., 2022). Still, this distinc-
tion clarifies the main signals that our different task types should rely on and enables
us to compare tokenizer settings on these two different types of tasks.

We evaluate tokenizers on 110M parameter encoder models as encoder models tend to
reach higher performance for classification tasks in low parameter settings. However,
we risk not accounting for emergent capabilities of popular larger generative language
models. For example, the number of context tokens for recent models are generally
much larger than the original 512 tokens of BERT base.

We find that logistic regression correlates with downstream performance on classific-
ation tasks. For more complex tasks like regression or generation tasks, logistic regres-
sion might not be applicable. However, we still see it as a great benefit that logistic
regression can enable us to quickly test tokenizers on a variety of different tasks and
make a more informed decision on what tokenizers to test more rigorously.

For tasks requiring robustness to language variation, many more tasks could have been
included. For example, future work could include more challenging tasks like chal-
lenge NLI datasets, e.g., ANLI (Nie et al., 2020a). Further, future work could investig-
ate different types of tasks such as question answering or arithmetic tasks. For tasks
requiring sensitivity to language variation, we originally planned to include more clas-
sification tasks that are tied to well-established factors of language variation, e.g., age
prediction and geographic location prediction (Nguyen et al., 2016). However, we re-
peatedly encountered difficulties with cleanly separating semantic from form-based
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cues. For age prediction and location prediction specifically, logistic regression mod-
els made extensive use of content words. Based on the coefficients of our logistic re-
gression models, we excluded tasks that we expected to mainly require sensitivity to
language variation, but where the models primarily relied on content words.

We varied one tokenizer setting at a time while leaving the other two on their “default
values” (i.e., miscellaneous fitting corpus, GPT2 pre-tokenizer and vocabulary size of
32k), in order to isolate the effect of each individual setting without exhaustive testing
of all possible combinations. Future work could explore interdependencies between
tokenizer settings through more comprehensive testing.

The tokenizer settings seem to have different effects when the pre-training corpus and
fitting corpus differ. The pre-training corpus might influence in how far a model can
leverage the diversity encoded in the tokenizer. See Appendix A.5 for further experi-
ments. Note, however, that recent work suggests to only use vocabulary that appears
in the training corpus (Land and Bartolo, 2024) — which is unlikely when different cor-
pora are used for model training and tokenizer fitting.

Ethical Considerations

Our pre-training and fitting corpora are largely based on publicly shared and accessible
datasets from popular online forums and web pages (e.g., Wikipedia, Reddit, Common
Crawl, ...). Unfortunately, these datasets were mostly collected without explicit con-
sent from users and might lead to (among others) privacy concerns. Individuals might
be identifiable from their written texts. However, we hope that the risks of reusing
already published datasets are minimal. We collected tweets from Twitter in 2021 us-
ing Twitter’s official API, but opt to not share them publicly. While we aim to include
different language varieties in our datasets, they might not be representative of English
language use across different social groups. For example, we expect a skew towards
straight, white, American, young and male authors. We caution against using our data-
sets and tasks for general claims about broad selection of language varieties. We con-
firm to have read and that we abide by the ACL Code of Ethics. Beside the mentioned
ethical considerations, we do not foresee immediate risks of our work.
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Part III
Building Neural Style

Representations

So far, I have defined NLP tasks requiring robustness (e.g., paraphrase classification)
and NLP tasks requiring sensitivity to language variation (e.g., authorship verification).
I showed that language variation might be important to consider at all stages of build-
ing LLMs—including tokenizers. In Part III of this dissertation, I focus on a task re-
quiring sensitivity to language variation: representing the linguistic style of a text. Spe-
cifically, in Chapter 4, I introduce a linguistically informed evaluation framework to
evaluate in how far text representations represent linguistic style. I find that neural rep-
resentations outperform vanilla feature-based representations like character 3-grams
and function word frequencies in their sensitivity to well-established dimensions of
style. In Chapter 5, I use contrastive learning to train style representations. I demon-
strate that hard negatives are crucial to train text representations that are independent
from referential meaning. Beyond the technical contributions, this part of my disser-
tation underscores the broader need for more sensitivity to language variation in NLP
models.
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4
Does It Capture STEL? A Modular,

Similarity-based Linguistic Style
Evaluation Framework

In this first chapter of Part III on Building Neural Style Representations, I discuss methods to
evaluate text representations in their capacity to represent “linguistic style” — a prerequisite
to building better style representations. This chapter is based on Wegmann, A., & Nguyen, D.
(2021). Does It Capture STEL? A Modular, Similarity-based Linguistic Style Evaluation Frame-
work. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP) (pp. 7109-7130). https://doi.org/10.18653/v1/2021.emnlp-main.
569. See a video of the conference presentation here: https://youtu.be/WPbxyOrDK6w.
Some results were updated compared to the original publication, most notably the ROBERTA

results on STEL.

Abstract

Style is an integral part of natural language. However, methods for evaluat-
ing a language model’s ability to represent style are rare, often application-
specific and usually do not control for content. We propose the modu-
lar, fine-grained and content-controlled similarity-based STyle EvaLuation
framework (STEL) to evaluate any model or method that can calculate the
similarity of two texts in terms of their linguistic style. We illustrate STEL
with two general dimensions of style (formal vs. informal style and simple
vs. complex style) as well as two specific features of style (contrac’tion
and numb3r substitution). We find that BERT-based methods outperform
vanilla versions of commonly used style representations like character 3-
grams, punctuation frequency and LIWC-based approaches. We invite the
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1 2

Anchor (A)
r u a fan of them or
something?

Are you one of
their fans?

Sentence (S)

Oh, and also that young
physician got an unflat-
tering haircut

Oh yea and that
young dr got a
bad haircut

Figure 4.1: STEL Task Instance. Anchor 1 (A1) and anchor 2 (A2) and the alternative sentences
1 (S1) and 2 (S2) are split along the same style dimension (here: formal/informal). The pink text
is less formal than the black text. The sentences and anchors are paraphrases of each other. The
STEL task is to order S1 and S2 to match the order A1-A2 (here: informal, then formal). Here, the
correct order is S2-S1, so the reverse of what is displayed.

addition of further tasks and task instances to STEL and hope to facilitate
the improvement of style-sensitive representations.

4.1. Introduction

Natural language is not only about what is said (i.e., content), but also about how it
is said (i.e., linguistic style). Linguistic style and social context are often considered
to be interrelated (e.g., Coupland, 2007; Bell, 2014). For example, people can accom-
modate their linguistic style to each other based on social power differences (Danescu-
Niculescu-Mizil et al., 2012). Furthermore, linguistic style can affect a reader as it
can, e.g., change the persuasiveness of arguments (El Baff et al., 2020) or the success
of pitches on crowdsourcing platforms (Parhankangas and Renko, 2017). As a result,
style can be important to address in natural language generation (Ficler and Goldberg,
2017), including identity modeling in dialogue systems (Li et al., 2016), style preserva-
tion in machine translation (Niu et al., 2017; Rabinovich et al., 2017) and text genera-
tion from structured data (van der Sluis and Mellish, 2009). Further, style is relevant for
natural language understanding, e.g., in author profiling (Rao et al., 2010), abuse de-
tection (Markov et al., 2021) or understanding conversational interactions (Danescu-
Niculescu-Mizil and Lee, 2011).

In NLP, there are several evaluation benchmarks — datasets and tasks used to assess
model performance on specific objectives like named entity recognition (e.g., CoNLL
in Tjong Kim Sang and De Meulder, 2003) or natural language inference (e.g., GLUE in
Wang et al., 2018, 2019) — but less emphasis has been put on linguistic style. Neverthe-
less, natural language processing literature shows a variety of approaches for the eval-
uation of style measuring methods. With style measuring methods, we refer to models
or methods that, either, provide text representations that are sensitive to differences
ins style (most often vector representations as, e.g., in Hay et al., 2020), or, can com-
pare two texts on style (e.g., the edit distance between two texts or the predicted value
of a cross-encoder that rates the style similarity of sentence pairs). Style measuring
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methods have been tested on whether they group texts by the same authors together
(Hay et al., 2020; Bevendorff et al., 2020b), whether they can correctly classify the style
of a text (Niu and Carpuat, 2017; Kang and Hovy, 2021) and whether human-annotated
words of similar style1 are similarly represented (Akama et al., 2018). However, these
evaluation approaches are (i) often application-specific, (ii) often do not test for fine-
grained style differences and (iii) usually do not control for content and (iv) are rarely
used to compare different style measuring methods.

We propose the modular, fine-grained and content-controlled similarity-based STyle
EvaLuation framework (STEL) to address these shortcomings (i)-(iv): (1) Style is a
highly ambiguous and elusive term (e.g., wildly different definitions in Biber and Con-
rad, 2019; Crystal and Davy, 1969; Labov, 2006; Xu, 2017). We propose a modular
framework where components can be removed or added to fit an application or spe-
cific understanding of style. (2) Variation in style can be subtle. Our proposed evalu-
ation framework can be used to test for fine-grained style differences. (3) Style is hard
to disentangle from content as the two are often correlated (e.g., Gero et al., 2019; Bis-
choff et al., 2020). For example, people probably speak more formally in a job interview
with a potential new manager than in a bar with friends. At the same time, the distri-
bution of topics that are discussed in these two settings might be different too: In a job
interview one will probably talk more about personal qualifications and past profes-
sional experiences than in a bar among friends. Thus, language models and methods
might pick up on spurious content correlations in a benchmark that does not control
for content (similar to correlations in NLI in Poliak et al., 2018). (4) We demonstrate
STEL on English and apply it to several style measuring methods.

An example STEL task is shown in Figure 4.1. The task is to order sentence 1 (S1)
and sentence 2 (S2) to match the style order of anchor 1 (A1) and anchor 2 (A2). A
group of STEL task instances can contrast different types of style: Here, we demon-
strate two general dimensions of style (formal/informal and simple/complex) as well
as two specific features of style (contraction and number substitution). By design, the
style features are easy to identify. Thus, the STEL task instances contrasting differ-
ent style features are easier to solve than the STEL task instances contrasting different
style dimensions. STEL contains 815 task instances per dimension and 100 task in-
stances per feature (see Table 4.1). To be evaluated on STEL, methods do not need
to be able to classify styles directly. Instead, any method that can calculate the style
similarity between two sentences can be evaluated: Style measuring methods that (1)
calculate similarity values directly (e.g., edit distance or cross-encoders in Reimers and
Gurevych, 2019) and (2) represent a sentence’s style as a vector (e.g., Hay et al., 2020;
Ding et al., 2019) by using a distance or similarity measure between them (e.g., cosine
similarity). STEL components can easily be created from parallel sets of paraphrases
which differ along a style dimension (Section 4.3), e.g., sets of paraphrases that vary
along the formal/informal dimension as in Rao and Tetreault (2018).

1Akama et al. (2018) created a dataset of Japanese word pairs that are rated for their style similarity on a scale
of five values based on 15 human annotations. The words were selected for annotation by asking human
annotators to judge which words in an utterance would be altered in different situational contexts.
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Component Example
Name # GT Anchor 1 (A1) Anchor 2 (A2) Sentence 1 (S1) Sentence 2 (S2)

formal/-
informal

815 ✗ r u a fan of
them or some-
thing?

Are you one of
their fans?

Oh, and also, that
young physician
got an unflattering
haircut.

Oh yea and that
young dr got a bad
haircut.

simple/-
complex

815 ✗ These rock
formations
are made of
sandstone
with layers of
quartz.

These rock form-
ations are featur-
eally composed
of sandstone with
layers of quartz.

The Odyssey is an
ancient Greek epic
poem attributed
to Homer.

The Odyssey is
an old Greek epic
poem written by
Homer.

number
substitu-
tion

100 ✗ <3 friends
forever

<3 friends 4ever D00d $30 is heaps
cheap, that must
work out to just a
couple of bucks an
hour

Dude $30 is heaps
cheap, that must
work out to just a
couple of bucks an
hour

contrac-
tion

100 ✓ In that time,
it’s become one
of the world’s
most signific-
ant financial
and cultural
capital cities.

In that time, it
has become one
of the world’s
most significant
financial and
cultural capital
cities.

Will doesn’t refer
to any particular
desire, but rather
to the mechanism
for choosing from
among one’s de-
sires.

Will does not refer
to any particular
desire, but rather
to the mechanism
for choosing from
among one’s de-
sires.

Table 4.1: STEL Examples. We give an example for each component of STEL: Formal/informal
and simple/complex for the more complex style dimensions as well as number substitution and
contraction for the simpler style features. The task is to order sentence 1 (S1) and sentence 2 (S2)
to match the style order of anchor 1 (A1) and anchor 2 (A2). If the original order (i.e., S1-S2) is
correct, the ground truth column (GT) shows a ✓.

Contribution With this work, we contribute (a) the modular, fine-grained and
content-controlled STEL framework (Section 4.3), (b) 1830 validated task instances for
the considered style components (Section 4.4) and (c) baseline results of STEL on 18
style measuring methods (Section 4.5). We find that the transformer-based ROBERTA

and BERT base models outperform simple versions of commonly used style measur-
ing approaches like LIWC, punctuation frequency or character 3-grams. We invite the
addition of complementary tasks and hope that this framework will facilitate the de-
velopment of improved style-sensitive models and methods. Our data and code are
available on GitHub.2

4.2. Related Work

Linguistic style has been analyzed from different perspectives and along different di-
mensions. A speaker’s style can, for example, be influenced by the situation, the
speaker’s identity or the speaker’s choices (Preoţiuc-Pietro et al., 2016; Flekova et al.,
2016; Nguyen et al., 2016; Bell, 1984). In NLP, previously commonly analyzed “style” di-
mensions include formal/informal, simple/complex, abstract/concrete and polite/im-
polite (Pavlick and Nenkova, 2015; Pavlick and Tetreault, 2016; Paetzold and Specia,
2016; Brooke and Hirst, 2013; Madaan et al., 2020).

2https://github.com/nlpsoc/STEL

https://github.com/nlpsoc/STEL
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Linguistic style is usually defined to be distinct from content (or: referential meaning).
However, style is often found to be correlated with content (e.g., Gero et al., 2019). NLP
researchers have found different ways to take content out of the equation: They avoid
the use of content-specific features such as content words (Neal et al., 2017; Stamata-
tos, 2017), compare the style of a text with its paraphrase (Preoţiuc-Pietro et al., 2016;
Niu and Carpuat, 2017) or use texts with low semantic similarity scores or different
topic labels but written by the same author to learn the stylistic choices of authors
(e.g., Boenninghoff et al., 2019a). Others choose no or only limited control for content
(e.g., Zangerle et al., 2020; Kang and Hovy, 2021). There has been considerable work
in creating parallel datasets of sentence-level paraphrases with shifting style (Xu et al.,
2012, 2016; Rao and Tetreault, 2018; Krishna et al., 2020). The task of generating para-
phrases of text fragments with different style properties is sometimes also called style
transfer.

There is little work on general evaluation benchmarks for style measuring methods.
Kang and Hovy (2021) use style classification tasks to compare language models. Only
models that classify style into the given 15 “style” dimensions (e.g., formality, sar-
casm, ...) can be evaluated. They do not control for content. Other related tasks
are the PAN Authorship Verification (Kestemont et al., 2020) and Style Change Detec-
tion (Zangerle et al., 2020) tasks which aim at identifying whether two documents or
consecutive paragraphs have been written by the same author. In their current ver-
sion both tasks do not control for topic. However, Kestemont et al. (2020) controls for
domain (here: ‘fandom’ of the considered ‘fanfictions’). The best performing model
for Kestemont et al. (2020) was a neural LSTM-based siamese network (Boenninghoff
et al., 2020), which is conceptually similar to some variants of sentence BERT (Reimers
and Gurevych, 2019). The PAN setup assumes that authors tend to write in a relatively
consistent style. Based on similar assumptions, the field of authorship attribution aims
to determine which author wrote a given document.

Especially in authorship attribution, recurring style features include character n-
grams, punctuation, average word length or function word frequency (Neal et al., 2017;
Grieve, 2007; Stamatatos, 2009). Other recurring methods for style measurement in-
clude LIWC (Pennebaker et al., 2015; Danescu-Niculescu-Mizil et al., 2011; El Baff et al.,
2020), and learned vector representations of words and sentences (Akama et al., 2018;
Ding et al., 2019; Hay et al., 2020). Niu and Carpuat (2017) suggest that style variations
are already represented in commonly used neural embeddings.

Binary and more fine-grained style classification has been employed at the word, text
fragment as well as document level (Danescu-Niculescu-Mizil et al., 2013a; Pavlick and
Nenkova, 2015; Preoţiuc-Pietro et al., 2016; Pavlick and Tetreault, 2016; Kang et al.,
2019). Traditionally, documents considered in authorship attribution were longer than
1,000 words (e.g., Eder, 2013), but recently there has been increased interest in text
fragments with fewer than 300 words (e.g., Brocardo et al., 2013; Boenninghoff et al.,
2019a).
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4.3. Our Style Evaluation Framework

We introduce the modular, fine-grained, and content-controlled similarity-based STyle
EvaLuation framework (STEL). STEL tests a (language) model’s ability to capture the
style of a sentence.

Style definitions Style has received a lot of attention in fields like sociolinguistics,
stylometry, forensic linguistics, but also in natural language processing. With the term
researchers usually aim to the describe the form of a text (i.e., how something is said)
more so than its referential meaning (i.e., what is said).3 However, beyond this distinc-
tion style has been conceptualized in many different, often conflicting, ways. Some
have defined style as “aesthetic preferences” of specific authors or time periods without
any communicative function (Biber and Conrad, 2019), while others describe it as a so-
cially meaningful clustering of features (Campbell-Kibler et al., 2006) or encompassing
all forms of language variation (Crystal and Davy, 1969) shared by a group of people.
In NLP, the conceptualizations of style have been even more broad, arguably encom-
passing any general attribute of a text (Jin et al., 2022), including its sentiment and
politeness. For a broader overview of style definitions and operationalizations refer to
Background Section 2.2.

Modular operationalization of style We refrain from meddling in the style defini-
tion debate and stick with the broad notion of “how vs. what”. STEL consists of tasks
that contrast pair of sentences with the same referential meaning and thus takes the
“what” out of the equation. For the “how”, we take inspiration from Campbell-Kibler
et al. (2006)’s description of style as a clustering of features. We consider single features
(i.e., more specific linguistic choices or “features”) as well as more general dimensions
of style (i.e., more complex combinations of style features). By not only using complex
style dimensions, but also small scale and simpler features, STEL allows for controlled
and fine-grained testing. We can easily make sure that only the features and no other
aspects change (cf. Table 4.1). Depending on one’s goal and understanding of style,
some components (i.e., dimensions or features) should be excluded and others should
be added to this modular framework. We exemplify the framework’s more complex
dimensions with the formal/informal distinction as this previously has been the most
agreed upon dimension of style (Heylighen and Dewaele, 1999; Labov, 2006). Addi-
tionally, we use the simple/complex dimension which has often been of interest in NLP
(Wubben et al., 2012; Al-Thanyyan and Azmi, 2021; Jablotschkin et al., 2024), has been
used in connection to linguistic-stylistic choices (Haaften and Leeuwen, 2021; Pavlick
and Nenkova, 2015) and has an English parallel corpus available (Xu et al., 2016). We
exemplify the framework’s simpler style dimensions (i.e., features) with number sub-
stitutions (e.g., number → numb3r) and contraction usage (e.g., can not → can’t). Con-
tractions are a common part of stylistic or variational analysis (Biber, 1988; Grieve,
2011). See Table 4.1 for examples for each component.

3In Natural Language Generation (NLG), this distinction has also been used, usually called tactical vs. stra-
tegical NLG (Thompson, 1977; van der Sluis and Mellish, 2009).
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Controlling for content It is difficult to clearly separate style from content, e.g.,
Stamatatos (2017) and Gero et al. (2019). Specific scenarios might correlate with both
style and content. For example, in a job interview applicants might use a more formal
style and talk more about their profession than in a more informal setting at a bar.
Then, a model that generally rates texts about jobs as formal and texts about beverage
choices as informal might perform well at formality prediction if one does not control
for content. In other words, models that correctly use style features could sometimes
be indistinguishable from those that use topical features. To control for content, we use
parallel paraphrase datasets (Section 5.3.2), which consist of a set of sentences written
in one style and a parallel set of sentences written in another. The paraphrase corpora
we use (Xu et al., 2016; Rao and Tetreault, 2018) have annotators rewrite reference sen-
tences with the direction to keep the content the same. Similarly, we rewrite reference
sentences by removing number substitutions and contractions for the STEL features
(Section 4.4). Note, however, that the parallel datasets might include pairs that do not
show complete content equivalence. Insisting on complete equivalence would limit
the set to sentences to those that are practically identical at the string level (Dolan and
Brockett, 2005; Bhagat and Hovy, 2013), making it impossible to compare more com-
plex dimensions of styles.

Task setup We test a method’s style measuring capability with tasks of the setup
shown in Figure 4.1. The sentences (S1 and S2) have to be ordered to match the or-
der of the anchor sentences (A1 and A2). Here, ‘r u’ (A1) and ‘Oh yea’ (S2) are written
in a more informal style than their respective paraphrases A2 (‘Are you’) and S1 (‘Oh,
and also’). Thus, the correct order is S2, then S1. We call this setup the quadruple setup.
Additionally, we explore a second task setup, the triple setup, which leaves out anchor 2
(A2). There, the task is to decide which of the two sentences matches the style of an-
chor 1 (A1) the most. The two different setups are similar to the triple and quadruple
training instances in the field of metric learning, e.g., de Vazelhes et al. (2020); Law et al.
(2016) and Kaya and Bilge (2019).

4.4. STEL Task Creation

We describe the task instances of STEL: First, we create potential task instances (Sec-
tion 4.4.1). Second, we describe problems with the created instances (i.e., ambiguity in
Section 4.4.2). Third, we filter out the problematic instances via crowdsourcing (Sec-
tion 4.4.3).

4.4.1. Potential Task Instances

We create potential task instances on the basis of parallel paraphrase datasets written
in style 1 and style 2 respectively. For a (style 1, style 2) paraphrase pair (anchors in
Table 4.1), we randomly select another paraphrase pair (sentences in Table 4.1). Again
randomly, we decide which of the anchor pair is anchor 1 (A1) and which is anchor 2
(A2) and fix that ordering for all future considerations. We do the same for the sentence
pair. The answer to the STEL task (cf. Figure 4.1) is labeled as ✓or S1-S2 if A1 was
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taken from the same style set as S1, e.g., both from style 1. Otherwise the order is
reversed.

Formal/informal dimension We use the test and tune split of the Entertain-
ment_Music GYAFC subcorpus (Rao and Tetreault, 2018) as the parallel paraphrase
dataset. It consists of a set of informally phrased sentences and a parallel set of crowd-
sourced formal paraphrases. We create 918 potential STEL formal/informal task in-
stances.

Simple/complex dimension We use the test and tune split from Xu et al. (2016). It
consists of English Wikipedia sentences and 8 crowd-sourced simplifications per sen-
tence. For each Wikipedia sentence, we randomly draw the parallel paraphrase out of
the 8 simplifications. We discard sentences that are too close to the original via the
character edit distance of 3 or lower. From this parallel paraphrase dataset, we create
1195 potential STEL simple/complex task instances.

Contraction feature We create the parallel contraction dataset from the December
2018 abstract dump of English Wikipedia4. The Wikipedia style guide discourages con-
traction usage and provides a dictionary with contractions that should be avoided.5 We
use an adapted version6 to select 100 sentences where an apostrophe is present and a
contraction is possible. Such a sentence could be “It is near Thomas’s car”. For each
sentence, we create a parallel sentence with a contraction, e.g., “It’s near Thomas’s car”,
cf. Table 4.1.

Number substitution feature The character by number substitution task instances
are semi-automatically created from the Reddit comment corpus of the months May
2007-September 2007, June 2012, June 2016 and June 2017 taken from the Pushshift
dataset (Baumgartner et al., 2020). We select a pool of potential sentences where
words contained common character substitution symbols (4,3,1,!,0,7,5) or are part of
a manually selected list of number substitution words (see Appendix B.1.2). Then, we
manually filtered out sentences without number substitutions (e.g., common measur-
ing units or product numbers). We selected 100 sentences, 50 of which were selected
to contain at least one additional number that is not part of a number substitution
word (e.g., Anchor 1 in Table 4.1). This setup ensures that the task is not as simple
as checking whether there are numbers present in the sentence. To create the paral-
lel phrases, we manually translated the sentences to contain no number substitutions.
As we looked for naturally occurring number substitution words, we decided to keep
words that contain additional changes besides number substitution. For example, the
swapping of characters (t3h, the), generally different spelling (e.g., ‘d00d’, ‘dude’) or
phonetic spelling (e.g., ‘str8’, ‘straight’). We decided to replace the number substitu-
tion symbols with alphabetic characters only and not consider other character types

4https://archive.org/details/enwiki-20181220
5https://en.wikipedia.org/wiki/Wikipedia:List_of_English_contractions
6We removed less common contractions like ain’t or ’twas. See Appendix B.1.1 for the used contraction list.

https://archive.org/details/enwiki-20181220
https://en.wikipedia.org/wiki/Wikipedia:List_of_English_contractions
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FORMAL INFORMAL

S2 S1

A1A2

(a) Quadruple Setup: All four sentences are available.

FORMAL INFORMAL

S2 S1

A1

(b) Triple Setup: A2 is removed, the gold label is wrong.

Figure 4.2: Triple Problem. Quadruple tasks are created from sentence pairs (A1, A2) and
(S1, S2) that are split along the same style dimension (e.g., formal/informal). See an example
in (a). For each pair, only the relative order on the axis (here: S1 is more informal than S2 and
A1 is more informal than A2) but not the absolute localization is known. This might lead to a
wrong generated label for the triple setup: For the triple setup in (b), A2 is removed. Here, S2 is
stylistically closer to A1, whereas the generated “ground truth” label would be S1 is closer to A1,
because A1 and S1 were both more informal than their counterpart.

like punctuation marks. For example, we convert a string like ‘s1de!!!!!1!’ to ‘side!!!!!1!’,
replacing 1 with i but not replacing 1 with !.7

4.4.2. Ambiguity

Manual inspection shows that the created potential task instances of the formal/in-
formal and simple/complex dimension contain ambiguities: (i) Some are a result of
unclear or very fine distinctions between the two parallel styles in the original data.
For example, consider “There he died six weeks later, on 13 January 888.” and “here he
died six weeks later, on 13 January 888.”. The second is labeled as written in a simpler
style in Xu et al. (2016). However, replacing “there” with “here” arguably does not sim-
plify the sentence. After manual inspection, ambiguities like this, where more than one
label could be justified for a given sentence, seem to be more prevalent for the simple/-
complex than the formal/informal dimension. (ii) Other ambiguities are the result of
entangled additional linguistic components. For example, consider the potential task
instance (A1) “He’s supposed to be in jail!”, (A2) “I understood he was still supposed to
be incarcerated.” and (S1) “green day is the best i think”, (S2) “I think Green Day is the
best.”. The sentences are clearly split along the formal/informal dimension leading to
the label S1-S2. Still, A1 and S2 could also be understood as being written in a more
decisive tone than A2 and S1 leading to the order S2-S1.

We find that using parallel corpora to create the triple instances has additional theor-
etical limitations that can lead to ambiguity: Consider the Triple Problem in Figure 4.2:
Here, (A1, A2) and (S1, S2) are two paraphrase pairs taken from the parallel informal/-
formal dataset, where both A1 and S1 are labelled as more informal than their coun-
terpart. To get from the quadruple to a triple setup, we remove A2 and automatically
create the “gold label” that says that A1 and S1 match in style, as they were both on the

7Note, substituting ! for 1 is a somewhat common practice online. See for example Androutsopoulos (2023).
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Sample Total
n Triple Quadruple n Quadruple

Dim κ acc. κ acc. κ acc.

all 602 0.29 0.62 0.35 0.78 2113 0.30 0.77
c 301 0.19 0.51 0.16 0.68 918 0.17 0.68
f 301 0.39 0.74 0.51 0.89 1195 0.48 0.90

(a) Results on the sample and total of task instances

Triple Quad Dim Share

✗ ✓
f 0.196
c 0.312

✓ ✗
f 0.047
c 0.140

✗ ✗
f 0.066
c 0.179

✓ ✓
f 0.691
c 0.369

(b) Sample analysis

Table 4.2: Annotation Results. We filter out ambiguous task instances via annotations. In (a),
we display inter-annotator agreement (Fleiss’s κ) and annotation accuracy (acc.) for the sample
and total of potential task instances on the quadruple and triple setup for the simple/complex
(c) and the formal/informal (f) dimensions. We also display the number of task instances per
dimension (n). In (b), we display the share of all combinations of “correct” (✓) and “wrong”
(✗) annotations w.r.t. the generated ground truth per dimension and task setup. The union of
✓✓and ✗✓cases (bold) make up a majority.

more informal side. However, due to the placement of (A1, A2) on the formal/informal
axis (see Figure 4.2), A1 is actually closer in style to S2 (compare also to the text ex-
ample in the paragraph above). Our generated “gold label” would be wrong for this toy
example. Additionally, having fewer sentences in the triple setup increases the chance
of a random correlation with a different linguistic component (similar to the ‘decisive
tone’ in the previous example).

4.4.3. Removing Ambiguity

Using crowd-sourced annotations, we filter the previously discussed ambiguity out of
the potential formal/informal and simple/complex task instances. We do this by re-
moving instances, where annotations do not align with our generated “ground truth”.
We do not filter the created simpler style features (contraction and number substitu-
tion) as those, by design, differ only in number substitution and contraction use (e.g.,
Table 4.1) and should contain few if any ambiguities.

Annotation tasks For both the triple and quadruple setup we collected annotations
on a sample of all created task instances (301 simple/complex and formal/informal
instances respectively). Then, motivated by the better agreement with the quadruple
setup on the sample (see Table 4.2a), we annotated a larger total set of task instances
on the quadruple setup alone. We had 617 and 894 more task instances annotated for
the formal/informal and simple/complex dimension respectively.

Annotation setup We used annotations from 839 different Prolific8 crowd workers
with 5 distinct annotators per potential task instance. We paid participants 10.21£/h9

8https://www.prolific.co/
9above UK minimum wage of 8.91£/h at the time of the study (April 2021), see https://www.gov.uk/
national-minimum-wage-rates

https://www.prolific.co/
https://www.gov.uk/national-minimum-wage-rates
https://www.gov.uk/national-minimum-wage-rates
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on average. All annotators were native English speakers as we assume them to have a
better intuition about their language. See Appendix B.3 for further detail.

Annotator agreement In Table 4.2a, we report inter-annotator agreement with
Fleiss’s κ (Fleiss, 1971) as κ allows different items to be rated by different sets of raters.
Inter-annotator agreement is only moderate. This does not mean that the annotations
are of poor quality. As discussed in Section 4.4.2, our created data contains ambigu-
ous, noisy or faulty task instances. Manual inspection confirms that low annotator
agreement is a sign of ambiguity (see also ‘Annotation Analysis’ Table B.2 in Appendix
B.3). This problem is more pronounced for the simple/complex than the formal/in-
formal dimension. We ensured annotator quality with screening questions (Appendix
Table B.1) and by selecting annotators with the highest platform-internal rating.

Annotation results Results are reported in Table 4.2a. Annotation accuracy is the
share of “correctly” annotated task instances out of all potential task instances. We
count an instance as having been annotated correctly if a majority of at least 3 annot-
ators align with the generated ground truth.

The accuracy and the inter-annotator agreement are considerably higher for the form-
al/informal dimension (Table 4.2a) than for the simple/complex dimension. This
aligns with our expectation of more ambiguity in the simple/complex task instances,
cf. Section 4.4.2(i). Similarly, our expectations regarding theoretical problems with the
triple setup (Section 4.4.2) are confirmed: Accuracy in the sample is generally higher
for the quadruple than the triple setting. There are more examples where the quad-
ruple setup was correctly annotated but the triple setup was not (✗✓in Table 4.2b),
than there are for the opposite kind (✓✗).

As a consequence, the annotation of the bigger set of task instances was only done on
the quadruple setup. On the total set of potential task instances (which includes the
sample), we obtained similar accuracy and annotator agreement as on the sample (see
Table 4.2a). We filter the potential task instances by only keeping those that were cor-
rectly annotated by a majority (i.e., at least 3/5). This leaves 822 task instances for the
formal/informal and 815 for the simple/complex dimension. We randomly remove
7 task instances from the formal/informal dimension for equal representation of the
two style dimensions. In the following, and under the name STEL, we will only con-
sider the quadruple setup on the 1830 filtered task instances (i.e., 815, 815, 100 and 100
for simple/complex, formal/informal, number substitution and contraction respect-
ively).

4.5. Evaluation

We use our STEL framework to test several models and methods that could be ex-
pected to capture style information (Section 4.5.1). We describe how the models de-
cide the STEL tasks (Section 4.5.2) and discuss their performance on STEL (Section
4.5.3).
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4.5.1. Style Measuring Methods

We describe methods and models that could be used to calculate a (style) similarity.
Given two sentences, the methods return a similarity value between 0 and 1 or -1 and
1 (when using cosine similarity), where 1 represents the highest similarity.

Language models We use the base BERT UNCASED and base BERT cased model
(Devlin et al., 2019). We calculate the mean over the subwords in the last hidden layer
to generate two sentence embeddings. Then, we use cosine similarity to compare the
sentences. We do the same with the cased ROBERTA base model (Liu et al., 2019).
ROBERTA encompasses BERT’s pretraining dataset and removes the next sentence
prediction (NSP) task. However, closer sentences could generally be more similar in
style than a different random sentence — possibly making the NSP a valuable learning
objective for style similarity learning. To look at this, we experiment with the BERT
NSP head on the cased and uncased base model. As the prediction head does not
provide an obvious vector representation, we calculate “similarity” value sim(A1, S1) by
using the predicted softmax probability that A1 is followed by S1. Additionally, we com-
pare to the sentence BERT ‘all-mpnet-base-v2’ (SBERT MPNET)10 and ‘paraphrase-
multilingual-mpnet-base-v2’ (SBERT PARA-MPNET)11 models (Reimers and Gurevych,
2019, 2020). Like BERT, MPNET uses a transformer architecture, but with a permuted
instead of a masked language modeling pre-training task (Song et al., 2020). Fur-
thermore, we experiment with the universal sentence encoder (USE) from Cer et al.
(2018).

Authorship attribution methods The following methods are inspired by successful
or commonly used approaches in authorship attribution (Neal et al., 2017; Sari et al.,
2018). We use character 3-gram similarity by calculating the cosine similarity between
the frequencies of all character 3-grams. We calculate the word length similarity via
the average word lengths a and b of two sentences: 1−|a −b|/max(a,b). We calculate
the punctuation similarity by using the cosine similarity between the frequencies of
punctuation marks {’,:,‘,’,_,!,?,;,.,",(,),-}, taken from Sari et al. (2018).

LIWC-based style measuring methods LIWC categories have previously been used
as style features (Niederhoffer and Pennebaker, 2002). We use LIWC 2015 (Pennebaker
et al., 2015) for (a) LIWC similarity by taking the cosine similarity between the com-
plete LIWC frequency vectors, (b) LIWC (style) similarity by taking the cosine similar-
ity between the 8 dimensional binary LIWC style vectors (1 if a word of the category
is present in the sentence, 0 otherwise) proposed in Danescu-Niculescu-Mizil et al.
(2012), (c) LIWC (function) similarity by taking 1− the difference between the relative
frequencies of function words. Function words have previously been used as a proxy
for style (Neal et al., 2017).

Other methods We also experiment with the “deepstyle” model (Hay et al., 2020) by
taking the cosine similarity between the style vector representations. Additionally, we

10best performing sentence embedding in September 2021, according to https://www.sbert.net
11best performing embedding trained on paraphrase data

https://www.sbert.net
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consider the following sentence features: NLTK POS Tags (Bird et al., 2019) and share of
cased characters (e.g., Sari et al., 2018) via the cosine similarity between the frequency
vectors and 1 - the difference between the proportion of cased characters respectively.
We also include the edit distance as a simple baseline.

4.5.2. Similarity-based Decision

To determine an answer for a STEL task in the quadruple setup, the methods need
to order two sentences (Figure 4.1). We do this by calculating the similarities (sim)
between Anchor 1 (A1), Anchor 2 (A2), Sentence 1 (S1) and Sentence 2 (S2). We decide
for the order S1-S2 if

(1− sim(A1,S1))2 + (1− sim(A2,S2))2 <
(1− sim(A1,S2))2 + (1− sim(A2,S1))2

(4.1)

For the ‘>’ case we use the order S2-S1, for ‘=’ ordering is settled randomly (cf., ‘ran-
dom’ in Table 5.3). See the Appendix Figure B.1 for a proof sketch after transforming
similarities to distances.

4.5.3. Results

Performance results are shown in Table 4.3. Random guessing would show an accuracy
of 0.5 exactly. Stylistic differences can be subtle for the STEL dimensions and we expect
this to be a hard task to solve. In contrast, the STEL features (i.e., contraction and num-
ber substitution) should be easier to solve (via detecting an additional apostrophe or
number) and are especially interesting for model error analysis. Note: We do not make
general quality judgements because methods were not trained on the components of
STEL and were often not even meant to measure style directly.

ROBERTA and BERT encode style information The best performing models are the
cased BERT base model (accuracy of 0.77) and ROBERTA (0.80) (Liu et al., 2019), a
successor of BERT . The BERT NSP heads seem to retain some information related
to style, however, the performance remains below the mean pooled BERT representa-
tions. The effect of training objectives on learning style information could be explored
further in future work.

(Semantic) sentence embedding methods perform well SBERT PARA-MPNET (0.68)
trained on the paraphrase data performs better than SBERT MPNET (0.61) and USE
(0.59). Overall, SBERT PARA-MPNET is the fourth best performing model after the
BERT/ROBERTA models and the best performing model in the nb3r dimension. In
future work, it could be interesting to explore the effect of different training data on
the performance of embedding models.

12ROBERTA results were updated compared to the publication. There was an issue with batch size and my
original implementation. The updated results show a higher ROBERTA than BERT performance and led
to small changes in the result discussion.

13NSP results were updated as well. They remain very similar to the original results.
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all formal complex nb3r c’tion random
filter full filter full filter full

BERT UNCASED 0.74 0.79 0.77 0.65 0.63 0.90 0.90 0 0
BERT CASED 0.77 0.82 0.81 0.68 0.64 0.92 1.0 0 0
ROBERTA12 0.80 0.83 0.81 0.73 0.67 0.94 1.0 0 0
SBERT MPNET 0.61 0.64 0.62 0.53 0.52 0.71 0.84 0 0
SBERT PARA-MPNET 0.68 0.73 0.72 0.55 0.54 0.95 1.0 0 0
USE 0.59 0.59 0.58 0.55 0.52 0.58 0.85 0 0

BERT UNCASED NSP13 0.67 0.72 0.71 0.60 0.57 0.67 0.76 0 0
BERT cased NSP 0.71 0.79 0.77 0.60 0.58 0.77 0.97 0 0

char 3-gram 0.55 0.58 0.57 0.52 0.50 0.50 0.64 0.05 0.05
word length 0.58 0.53 0.53 0.59 0.57 0.50 0.94 0.08 0.08
punctuation 0.56 0.58 0.58 0.50 0.49 0.50 0.92 0.38 0.39

LIWC 0.55 0.52 0.52 0.52 0.52 0.50 0.99 0.09 0.09
LIWC (style) 0.50 0.52 0.52 0.50 0.50 0.50 0.50 0.62 0.64
LIWC (function) 0.53 0.48 0.48 0.52 0.51 0.50 1.0 0.28 0.28
deepstyle 0.66 0.71 0.70 0.55 0.52 0.84 0.96 0 0

POS Tag 0.52 0.53 0.53 0.52 0.52 0.50 0.50 0.20 0.20
share cased 0.56 0.55 0.54 0.53 0.51 0.50 1.0 0.08 0.08
edit dist 0.54 0.56 0.56 0.52 0.51 0.50 0.39 0.08 0.07

Table 4.3: STEL Results. We display STEL accuracy for different language models and methods.
Random performance is at 0.5. The share of task instances for which a method decides ran-
domly as it can not decide between the two options (‘=’ in Equation 4.1) is given in the ‘random’
column. Both the performance on the set of task instances before (full) and after crowd-sourced
filtering (filter) is displayed. The two best accuracies are boldfaced. NSP stands for the next sen-
tence prediction head. The BERT and ROBERTA models perform the best. On average, methods
perform best for the c’tion and worst for the simple/complex dimension.

Off-the-batch LIWC vectors do not perform well On the style dimensions LIWC per-
forms similar to the random baseline, possibly because the LIWC methods often find
no difference between the two possible orderings (9%, 62% and 28% of the tasks).
Future work could explore models that weigh different LIWC categories against each
other or consider more fine-grained differences between LIWC categories.

Authorship attribution methods perform better than random Character 3-grams
and punctuation perform at 0.58 accuracy on the formal/informal dimension. Con-
sidering some of the informal examples, punctuation seems to be one of the most
prominent visible changes from a formal to an informal style (see Appendix Table B.2).
Interestingly, word length is the method that most clearly performs better on the
simple/complex than the formal/informal dimension. This aligns with the intuition
that shorter words are a sign of a simpler style as found in Paetzold and Specia
(2016).

Casing encodes style information The uncased performs worse than the cased
BERT model (0.74 vs. 0.77). Additionally, the cased letter ratio performs slightly better
than random for the formal/informal dimension (0.55) and perfect for the contraction
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feature (1.0): When the sentence consists of fewer lower cased characters (as a result
of removing them when using contractions), the share of upper cased characters in-
creases.

Style embedding yields promising results The method “deepstyle” (Hay et al., 2020)
performs well across STEL components (0.66). It performs the worst on the simple/-
complex dimension (0.55). The method embeds sentences in a vector space where
texts by “similar” authors are similarly embedded. In the training data (blog and news
articles), authors might not consistently use one style over the other. The difference
between same author and same style could be explored in future work.

Less ambiguous task instances reach higher accuracy values Table 5.3 (cf. ‘full’)
shows the accuracy of the style measuring methods for the complete set of potential
task instances before filtering out ambiguity (Section 5.3.2). The accuracies are the
same or lower than the crowd-validated task instances in STEL. The differences are
more pronounced for the simple/complex than the formal/informal dimension. This
aligns with the higher (expected) ambiguity in the simple/complex dimension (Section
4.4.2 and Section 4.4.3). In general, we recommend to use the filtered STEL task with
less ambiguity for testing.

4.6. Limitations and Future Work

Our illustrative set of task instances does not cover all possibilities of style variation.
Future work could extend STEL to cover additional style dimensions or more fine-
grained task instances using several sources of data.

The STEL task instances for one style component can contain correlations with uncon-
sidered (style) components. Consider the following task instance (shortened for read-
ability): (A1) “Forty-nine species of pipefish [...] have been recorded.”, (A2) “Forty-nine
type of pipefish [...] have been found”, (S1) “Patients [...] must have their liver checked
for damage and other side effects.” and (S2) “[...] patients [...] must be monitored for
liver damage and other possible side effects.”. (A2) and (S1) are the simpler version of
(A1) and (S2) (Xu et al., 2016). Additionally, the sentences vary along other aspects: (A2)
is missing the punctuation mark and includes a misspelling. (S1) is different in content
from (S2) as (S1) is only considering effects on the liver while (S2) also includes other
side effects. However, those aspects did not change the label given by the annotators
(S2-S1) and should mostly be secondary to the considered style dimension.

With STEL, language models and methods are tested only on whether they capture
clear differences in style when content is approximately the same. When there are also
content differences, such models might put more emphasis on content than stylistic
aspects. Our framework could be extended to allow testing for whether a model prefers
style over content (e.g., with a new task format where sentence 1 is closer in content to
anchor 1 but closer in style to anchor 2, cf. Figure 4.1).

STEL could also be extended to test for individual author styles and style variation re-
lated to the social or regional background of authors (e.g., different age groups). For
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example, by including sentence pairs with the same content but written by different
authors. Current and future dimensions could also be extended by a train/dev/test
split to enable training on the task directly. Further, STEL could be enriched by in-
cluding longer texts (e.g., paragraphs or documents) as anchor and alternative sen-
tences.

4.7. Conclusion

Style is an integral part of language. However, there are only few benchmarks for
linguistic style. In this work, we introduce STEL, a modular, content controlled and
fine-grained similarity-based style evaluation framework. We provide task instances
on well-established dimensions of style (formal/informal and simple/complex) as well
as more fine-grained style features (contraction usage and numb3r substitutions). We
control for content with the help of paraphrases and a quadruple setup.

On STEL, we test several common approaches that have been used as a proxy for style
in the past. Several results are expected: Punctuation and case-sensitive approaches
help for the formal/informal dimension (Pavlick and Tetreault, 2016), word length
helps to recognize simple/complex styles (Paetzold and Specia, 2016) and common
authorship attribution methods like character n-grams help on STEL. Surprisingly, the
common LIWC dictionary (Pennebaker et al., 2015) based approach does not work well
on STEL off the batch. It might need more specific weighing of the different LIWC
categories against each other. Newer neural and transformer-based approaches out-
perform feature-based approaches even when they were only trained on MLM or re-
lated semantic training tasks. Out of the evaluated language models and methods, the
ROBERTA base model performs the best.

We hope that this framework will grow to include an even more exhaustive representa-
tion of linguistic style and will facilitate the development of improved style(-sensitive)
measures.

Task Usage

When using this task, please also cite the original datasets from which the tasks were
created: (1) Rao and Tetreault (2018) for the formal/informal component and (2) Xu
et al. (2016) for the simple/complex component. (1) also needs the permission for us-
age of the “L6 - Yahoo! Answers Comprehensive Questions and Answers version 1.0
(multi part)”14.

Ethical Considerations

The STEL tasks are based on datasets (Rao and Tetreault, 2018; Baumgartner et al.,
2020; Xu et al., 2016) from popular online forums and web pages (Yahoo! Answers,
Reddit, Wikipedia). However, the user demographics on these platforms are often
skewed towards particular demographics. For example, Reddit users are more likely

14https://webscope.sandbox.yahoo.com/catalog.php?datatype=l

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
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to be young and male.15 Thus, our dataset might not be representative of (English)
language use across different social groups. Further, the usage of posts from online
platforms without explicit consent from users might lead to (among others) privacy
concerns. The Wikipedia simplifications and formal Yahoo! Answers paraphrases were
created by consenting crowd workers (Xu et al., 2016; Rao and Tetreault, 2018). We ex-
pect the sentences that were extracted from Wikipedia for the contraction dimension
and for the complex/simple dimension to lead to minimal privacy concerns as they
were meant to be read and copied by a broader public.16 Rao and Tetreault (2018) and
the nb3r dimension do not include user names. However, we acknowledge that users
might be identifiable from the exact wording of posts. We removed nb3r substitution
instances that included Reddit user names. We hope the ethical impact of reusing the
already published Rao and Tetreault (2018) dataset to be small.
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5
Same Author or Just Same Topic?

Towards Content-Independent
Style Representations

In this second chapter of Part III on Building Neural Style Representations, I discuss methods
for training neural text representations of “linguistic style”. We evaluate the newly trained
text representations on STEL, which was introduced in Chapter 4. This chapter is based on
Wegmann, A., Schraagen, M. & Nguyen, D. (2021). Same Author or Just Same Topic? To-
wards Content-Independent Style Representations. In Proceedings of the 7th Workshop on
Representation Learning for NLP co-located with ACL 2022 (pp. 249–268). https://doi.
org/10.18653/v1/2022.repl4nlp-1.26 See a video of the conference presentation here:
https://youtu.be/QHW7pfwJ56E.

Abstract

Linguistic style is an integral component of language. Recent advances
in the development of style representations have increasingly used train-
ing objectives from authorship verification (AV): Do two texts have the
same author? The assumption underlying the authorship verification
training task (same author approximates same writing style) enables self-
supervised and, thus, extensive training. However, a good performance on
the authorship verification task does not ensure good “general-purpose”
style representations. For example, as the same author might typically
write about certain topics, representations trained on authorship veri-
fication might also encode content information instead of style alone.
We introduce a variation of the authorship verification training task that
controls for content using conversation or domain labels. We evaluate
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whether known style dimensions are represented and preferred over con-
tent information through an original variation to the recently proposed
STEL framework. We find that representations trained by controlling for
conversation are better than representations trained with domain or no
content control at representing style independent from content.

5.1. Introduction

Linguistic style (i.e., how something is said) is an integral part of natural language. Style
is relevant for natural language understanding and generation (Nguyen et al., 2021;
Ficler and Goldberg, 2017) as well as the stylometric analysis of texts (El Bouanani
and Kassou, 2014; Goswami et al., 2009). Applications include author profiling (Rao
et al., 2010) and style preservation in machine translation systems (Niu et al., 2017;
Rabinovich et al., 2017).

While authors are theoretically able to talk about any topic and (un-)consciously
choose to use many styles (e.g., designed to fit an audience, see Bell, 1984), it is typ-
ically assumed that there are combinations of style features that are distinctive for an
author (sometimes called an author’s idiolect). Based on this assumption, the author-
ship verification task (AV) aims to predict whether two texts (A ,T1) have been written
by the same author (Martindale and McKenzie, 1995; Coulthard, 2004; Neal et al., 2017).
Recently, training objectives based on the authorship verification task have been used
to train neural vector representations of text that are sensitive to style (Boenninghoff
et al., 2019b; Hay et al., 2020; Zhu and Jurgens, 2021), we call them style representations.
Training objectives based on authorship verification are especially promising because
they do not require any additional labeling when author identifiers are available. Sim-
ilar to the distributional hypothesis, the assumption underlying the authorship veri-
fication training task (same author approximates same writing style) enables extensive
self-supervised learning.

Unfortunately, style representations trained on the authorship verification task might
suffer from not just being sensitive to changes in style, but also to changes in content.
This is because style and content are often correlated (Gero et al., 2019; Bischoff et al.,
2020). One author in our dataset might always write about their professional career,
while another might mostly write about a personal hobby. As a result, style representa-
tions might encode spurious content correlations (Poliak et al., 2018) because it helps
to solve the authorship verification task. A solution could be to control the authorship
verification task for content. For example, by having two texts have similar content
also when they were written by different authors. Current style representation learning
methods either use no (Halvani et al., 2019; Sundararajan and Woodard, 2018) or only
limited control for content (Hay et al., 2020) or use domain labels to approximate topic
(Boenninghoff et al., 2019a). Zhu and Jurgens (2021) work with 24 domain labels (here:
product categories) for more than 100k Amazon reviews. However, using a small set of
labels might be too coarse-grained to fully represent and thus control for content. We
introduce another level of content control based on conversations and test whether
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A
don’t suggest an open rela-
tionship if you’re not ready

Ts

it’s clear that
these are
wildly differ-
ent situations

Td

Aren't open relation-
ships usually just about
fixing something in the
relationship?

CC - Same Topic as ASame Author as A

Figure 5.1: Content Control (CC) and Contrastive (CAV) Variant of the Authorship Verifica-
tion Task. The CAV task is to match A with the utterance Ts that was written by the same au-
thor. Contrary to the traditional binary authorship verification task (A ,T1), this includes a third
“constrastive” utterance T2 that was written by a different author than T1. In addition to the
contrastive variation to authorship verification, we experiment with content control (CC) by se-
lecting Td and A to have the same approximate content with the help of a topic proxy. The topic
proxy approximates the topic of an utterance more or less well. The topic proxies we experiment
with are (1) random or no topic proxy, (2) the domain the utterance was written in and (3) the
conversation the utterance was written in.

the resulting representations are more sensitive to changes in style than to changes in
content.

Approach We introduce two independent variants to an authorship verification task
(A ,T1): the contrastive authorship verification or CAV variant and the content control
or CC variant. For CAV, we add a contrastive sentence T2 such that there exists exactly
one Td with d ∈ {1,2} that was written by a different author than A. For CC, we se-
lect all Td to have the same approximate content. An example of both variants can be
found in Figure 5.1. We fine-tune several siamese ROBERTA-based neural networks
(Reimers and Gurevych, 2019) to evaluate style representations trained with the new
variants for the authorship verification task. We train on utterances from the Reddit
platform but our approach could be applied to any other conversation dataset. While
previous work mainly aimed at learning representations that represent an author’s in-
dividual style (Boenninghoff et al., 2019b; Hay et al., 2020; Zhu and Jurgens, 2021), we
target general-purpose style representations. Therefore, we ask whether the trained
representations (a) represent known style dimensions (e.g. formal vs. informal) in the
embedding space (Section 5.4.2), (b) favor style information over content information
(Section 5.4.3) and (c) distance utterances written by different authors further from
each other, even if they have the same approximate content (Section 5.4.1).

Result When the content stays the same, we find that representations fine-tuned on
authorship verification are less sensitive to known style dimensions than the represent-
ations extracted from the ROBERTA base model. However, when content varies, rep-
resentations fine-tuned on authorship verification favor style information over content
information more often than the ROBERTA base model. The representations trained
with the combination of our CAV and CC variant are better than all other approaches
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at consistently distancing utterances written by the different authors further from each
other, even if they have the same approximate content. We show that our best repres-
entations are sensitive to stylistic features like punctuation and apostrophe types such
as ’ vs. ' using agglomerative clustering.

Contribution With this paper, we (1) contribute an extension of the authorship veri-
fication task that aims to control for content (CC) with conversation labels and (2) in-
troduce a novel variant of the authorship verification setup by adding a contrastive
utterance (CAV setup). Further, we (3) introduce a variation of the STEL framework
(Wegmann and Nguyen, 2021) to evaluate whether representations favor content over
style information. Finally, we (4) release the first style embedding model on the Hug-
ging Face hub1 and (5) demonstrate found stylistic features via agglomerative cluster-
ing. We hope to further the development of content-controlled style representations.
Our code and data are available on GitHub.2

5.2. Related Work

Semantic representation learning often uses the approach of self-supervised training
with contrastive learning objectives (Reimers and Gurevych, 2019; Gao et al., 2021).
Contrastive learning objectives (Hadsell et al., 2006) for semantic representations
push semantically distant sentence pairs apart and pull semantically close sentence
pairs together. Different strategies for selecting sentence pairs have been used. Re-
cently, SimCSE used same sentences with dropout as semantically close and randomly
sampled sentences as semantically distant sentences (Gao et al., 2021). Loss functions
that are known from semantic embedding learning have increasingly been used to
learn style representations as well (Boenninghoff et al., 2019a; Hay et al., 2020; Zhu and
Jurgens, 2021). “Semantically close” sentences are then replaced by sentences written
by the same author, i.e., style representations are often trained and evaluated on the
authorship verification task. As a result, deep learning approaches have been used to
learn text representations that solve the authorship verification task have been suc-
cessful (Shrestha et al., 2017; Litvak, 2019; Boenninghoff et al., 2019a; Saedi and Dras,
2021; Hay et al., 2020; Hu et al., 2020; Rivera-Soto et al., 2021; Zhu and Jurgens, 2021).
Fine-tuning ROBERTA has been shown to be competitive with other neural as well as
non-neural approaches (Zhu and Jurgens, 2021). Probably because the ROBERTA base
model already represents style information better than other feature based approaches
(Wegmann and Nguyen, 2021). As a result, we also chose the current SOTA approach
and fine-tune ROBERTA models to solve the authorship verification task. Instead of
sentence pair based loss functions, Reimers and Gurevych (2019) also experiment with
a triplet loss, which pushes an anchor closer to a semantically close sentence and pulls
the same anchor apart from a semantically distant sentence. We use the same ap-
proach for our contrastive authorship verification (CAV) setup.

1https://huggingface.co/AnnaWegmann/Style-Embedding
2https://github.com/nlpsoc/Style-Embeddings

https://huggingface.co/AnnaWegmann/Style-Embedding
https://github.com/nlpsoc/Style-Embeddings
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It is a well known problem that style and content are often correlated (Gero et al., 2019;
Bischoff et al., 2020). Feature-based authorship verification methods have controlled
for content by restricting the feature space to contain “content-independent” features
like function words or character n-grams (Grieve, 2007; Neal et al., 2017; Stamata-
tos, 2017; Sundararajan and Woodard, 2018). However, even these features have been
shown to not necessarily be content-independent (Litvinova, 2020). Deep learning ap-
proaches have used domain labels to approximate content and control for it (Boen-
ninghoff et al., 2019a; Zhu and Jurgens, 2021). Zhu and Jurgens (2021) address possible
spurious correlations by sampling half of the different and same author utterances
from the same and the other half from different domains (e.g., subreddits for Reddit).
We introduce a new method to control for content: using conversation labels.

5.3. Style Representation Learning

We aim to learn neural vector representations of style. Our approach is to fine-tune
BERT-based encoder models and use the mean-pooled representations in the last
layer as representations. We describe the fine-tuning task in Section 5.3.1, the data-
set in Section 5.3.2 and the model training in Section 5.3.3.

5.3.1. Training Task

The authorship verification (AV) task is the task of predicting whether two texts are
written by the same or different authors. It has recently been used to train neural vector
representations that are sensitive to style Boenninghoff et al. (2019b); Hay et al. (2020);
Zhu and Jurgens (2021). In the following, we introduce two independent variations to
the authorship verification task: Adding (1) content control via topic proxies and (2)
contrastive information with the CAV setup.

Content control (CC) Models optimized for authorship verification have been
known to make use of semantic information (Sari et al., 2018; Sundararajan and Wood-
ard, 2018; Potha and Stamatatos, 2018) and to perform badly in cross-topic settings
(Halvani et al., 2019; Bischoff et al., 2020). Recent studies use authorship verification
tasks to train style representations and address possible correlations by controlling for
domain (Zhu and Jurgens, 2021; Boenninghoff et al., 2019b). The idea is that texts from
the same domain are more likely to be about a similar topic than ones from different
domains. However, using a (usually small set of) domains might be too coarse-grained
to fully control for content. We compare three different levels of content control by
approximating content with the help of a topic proxy. We sample the utterance pairs
written by different authors (Td and A, cf. Figure 5.1) (i) from the same conversation,
(ii) from the same domain (e.g., subreddit for Reddit as in Zhu and Jurgens, 2021) or
(iii) randomly (as a baseline, similar to Hay et al., 2020). We hypothesize that two utter-
ances from the same conversation are more likely to be about the same topic than two
utterances from different conversations. Our newly proposed use of the same conver-
sation “topic proxy” is inspired by semantic sentence representation learning, where
conversations have previously been used as a proxy for semantic information encoded
in utterances (Yang et al., 2018; Liu et al., 2021). We test to what extent the three differ-
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ent topic proxies are contributing to content-independent style representations during
evaluation (Section 5.4.3).

CAV setup We introduce an adaption of the Authorship Verification task — the Con-
trastive Authorship Verification setup (CAV, Figure 5.1): Given an anchor utterance A
and two other utterances {T1,T2} = {Ts ,Td }, the task is to identify which of the two
texts T1,T2 equals Ts and was thus written by the same author as A. We experiment
with both CAV and binary AV setups for style representation learning. One task with
the CAV setup, which consists of three utterances (A, T1, T2), can be split up into two
AV tasks: (A, T1) and (A, T2). Using a contrastive authorship verification setup adds
learnable information to the task. Namely, the contrast between the commonalities
between (A, Ts ) and (A, Td ). It might be easier for the model to learn the distinctive
style of A’s author by seeing both at the same time — a text written by the same author
and a text written by a different author from A. Note that the CAV setup by itself is in-
dependent from the content control variation (explained in the previous paragraph),
so we do not make any restrictions about the content similarity between A,T1 and T2.
However, we suspect that CAV is especially useful when Td has a similar content as A,
forcing the model to look at style. Such a different author utterance can be called a
“hard negative”. In the future, it is also possible to adapt this setup to include several
instead of just one contrastive “hard negative” different author utterance. Such con-
trastive approaches have been successful in semantic embedding learning (Gao et al.,
2021; Reimers and Gurevych, 2019).

5.3.2. Dataset

We use a 2018 Reddit sample with utterances from 100 active subreddits3 extracted
via ConvoKit4 (Chang et al., 2020). Per subreddit, we sample 600 conversations with
at least 10 posts (which we call utterances). All subreddits are directed at an English
audience, which we infer from the subreddit descriptions. We removed all invalid ut-
terances.5 Then, we split the set of authors into a non-overlapping 70% train, 15%
development and 15% test author split. For each CC level (conversation, domain, no)
and each author split, we created a set of triples (A, Ts , Td ), i.e., nine sets in total (see
Table 5.1).

First, we created the triples for the train split of the dataset with conversation content
control. We sampled 210k distinct utterances A from the train author split. We use a
weighted sampling process to not overrepresent authors that wrote more utterances
than others. As a result, an author wrote text A at most 9 times (cf. “ma” in Table 5.1).
Then, for each utterance A, we randomly sampled an utterance Td that was part of the
same conversation as A but written by a different author. Then, for all 210k (A, Td )-
pairs, an utterance Ts was sampled randomly from all utterances written by the same

3https://zissou.infosci.cornell.edu/convokit/datasets/subreddit-corpus/subreddits_
small_sample.txt

4MIT license
5Utterance of only spaces, tabs, line breaks or of the form: "", " [removed] ", "[ removed ]",
"[removed]", "[ deleted ]", "[deleted]", " [deleted] "

https://zissou.infosci.cornell.edu/convokit/datasets/subreddit-corpus/subreddits_small_sample.txt
https://zissou.infosci.cornell.edu/convokit/datasets/subreddit-corpus/subreddits_small_sample.txt
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Setup Utt. Author (A, Ts) (A, Td)
CC level Data Split # AV # CAV # # max co do co do

train set 420,000 210,000 546,757 194,836 9 0.27 0.56 1.00 1.00
Conversation dev set 90,000 45,000 116,451 41,848 8 0.26 0.55 1.00 1.00

test set 90,000 45,000 116,621 41,902 8 0.27 0.55 1.00 1.00

train set 420,000 210,000 544,587 240,065 9 same 0.01 1.00
Domain dev set 90,000 45,000 116,490 50,939 8 as 0.02 1.00

test set 90,000 45,000 116,586 51,182 8 conversation 0.02 1.00

train set 420,000 210,000 548,082 270,079 9 same 0.00 0.01
No dev set 90,000 45,000 117,149 57,352 8 as 0.00 0.01

test set 90,000 45,000 117,434 57,726 8 conversation 0.00 0.02

Table 5.1: Data Split Statistics. Per content control (CC) level, we display the number of tasks
per setup (# CAV, # AV), unique utterances (Utt.) and authors for each split. We also show the
maximum number of times an author occurs as A’s author (max) and the fraction of same author
utterances (A, Ts ) and different authors utterances (A, Td ) that occur in the same conversation
(co) and domain (do). The choice of (A, Ts ) is the same for all CC levels for comparability.

author as A and for which A ̸= Ts holds. We equivalently sampled 45k tasks for the dev
and test.

For the domain and no CC level, we reuse A and Ts , to keep as many correlating vari-
ables constant as possible. Thus, we only resampled 210k utterances Td written by a
different author from A by sampling from the same domain or randomly.

We make sure that each combination of (A, Ts , Td ) occurs only once. Thus there are no
repeating CAV tasks.6 However, it is possible that some utterances occur more than
once across tasks. We randomly order Ts and Td to form triples (A, T1, T2) where
{T1,T2} = {Ts ,Td }. In total, we generate 210k train, 45k dev and 45k test tasks for each
CC level (see Table 5.1), corresponding to a total of 420k, 90k and 90k AV-pairs when
splitting the CAV task into (A, T1) and (A, T2) pairs (cf. Section 5.3.1).

5.3.3. Training

We use the Sentence-Transformers7 Python library (Reimers and Gurevych, 2019)8

to fine-tune several siamese networks based on (1) ‘bert-base-uncased’, (2) ‘bert-base-
cased’ (Devlin et al., 2019) and (3) ‘roberta-base’ (Liu et al., 2019). We expect those to
perform well based on previous work (Rivera-Soto et al., 2021; Zhu and Jurgens, 2021;
Wegmann and Nguyen, 2021). We compare using (a) contrastive loss (Hadsell et al.,
2006) with the AV setup (Section 5.3.1) tasks and (b) triplet loss (Reimers and Gurevych,
2019) with the CAV setup (Figure 5.1). The binary contrastive loss function uses a pair
of sentences as input while the triplet loss expects three input sentences. For the loss
functions, we experiment with three different values for the margin hyperparameter
(i) 0.4, (ii) 0.5, (iii) 0.6. We train with a batch size of 8 over 4 epochs using 10% of the

6There might be same author (A, Ts ) pairs that occur twice due to our specific sampling process. However,
this remains unlikely due to the high number of authors and utterances. Overall, the share of repeating
pairs remains lower than 1%.

7https://sbert.net/
8with Apache License 2.0

https://sbert.net/
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Testing Task
AV CAV

Training Task Conversation Domain No Conversation Domain No
Setup CC level AUC ±σ AUC ±σ AUC ±σ acc ±σ acc ±σ acc ±σ

ROBERTA base .53 .57 .61 .53 .58 .63

Conversation .69± .02 .70± .02 .71± .02 .68± .02 .69± .02 .70± .02
AV Domain .68± .01 .71± .01 .73± .02 .67± .01 .70± .01 .73± .00

No .58± .01 .63± .02 .79± .00 .59± .01 .66± .01 .78± .00

Conversation .69± .00 .70± .00 .71± .00 .68± .00 .69± .00 .70± .00
CAV Domain .68± .00 .70± .00 .72± .00 .68± .00 .70± .00 .72± .01

No .58± .00 .63± .03 .77± .00 .59± .00 .65± .00 .77± .00

Table 5.2: Test Results. Results for 6 different fine-tuned ROBERTA models on the test sets. We
display the AUC for the authorship verification task (AV) and the accuracy of the models for the
contrastive authorship verification setup (CAV) with different content control approaches (CC).
We display the standard deviation (σ) over three different seeds. Best performance per column
is boldfaced. Models generally outperform others on the CC level they have been trained on.

training data as warm-up steps. We use the Adam optimizer with the default learning
rate (0.00002). We leave all other parameters as default. We use the BinaryClassifica-
tionEvaluator on the AV setup with contrastive loss and the TripletEvaluator on the CAV
setup with triplet loss from Sentence-Transformers to select the best model out of
the 4 epochs. The BinaryClassificationEvaluator calculates the accuracy of identify-
ing similar and dissimilar sentences, while the TripletEvaluator checks if the distance
between A and Ts is smaller than the distance between A and Td . We use cosine dis-
tance as the distance function.

5.4. Evaluation of Style Representations

We evaluate the learned style representations on the Authorship Verification task (i.e.,
the training task) in Section 5.4.1. Then, we evaluate whether models learn to rep-
resent known style dimensions via the performance on the STEL framework (Weg-
mann and Nguyen, 2021) in Section 5.4.2. Last, we evaluate representations on their
content-independence with an original manipulation of STEL (Section 5.4.3). We find
that all investigated approaches perform similarly in representing style when content
stays the same, but using our proposed approach for style representation learning (CAV
with conversation level content control) makes style representations more independ-
ent from content than other training approaches.

5.4.1. Authorship Verification

We display the AV and CAV performance of trained models in Table 5.2. On the de-
velopment sets, ROBERTA models consistently outperformed the cased and uncased
BERT models. Also, different margin values only led to small performance differences
(Appendix C.1). Consequently, in Table 5.2, we only display the performance of the six
fine-tuned ROBERTA models on the test sets using the three different content controls
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(CC) and two different task setups (AV and CAV setups) with constant margin values of
0.5.

AV performance is usually calculated with either (i) AUC or (ii) accuracy using a pre-
determined threshold (Zhu and Jurgens, 2021; Kestemont et al., 2021). We use cosine
similarity to calculate the similarity between sentence representations. Thus, there is
no clear constant default threshold to decide between same and different author utter-
ances. A threshold could be fine-tuned on the development set, however, for simplicity
we use AUC to calculate AV performance instead. We use accuracy for the CAV task —
here no threshold is necessary (cosine similarity is calculated between A, T1 and A,
T2 and the highest similarity utterance is chosen). This makes the performance scores
on the test sets less comparable across setups — however, comparability of the CAV
and AV performance scores are limited in any case as the AV vs. CAV setups are funda-
mentally different. Performance scores can be compared across the same column, i.e.,
within the same AV and CAV setup. We aggregate performance with mean and standard
deviation for three different random seeds per model parameter combination.9

Overall, the AV & CAV training task setup (rows in Table 5.2) lead to similar perform-
ance on the test sets. As a result, we do not distinguish between them in this section’s
discussion. Generally, the representations tested on the CC level they were trained on
(diagonal) outperform other models that were not trained with the same CC level. For
example, representations trained with the conversation CC level, perform better on
the test set with the conversation CC than representations trained with the domain or
no CC.

Tasks with the conversation label are hardest to solve For all models, the perform-
ance is lowest on the conversation test set and increases on the domain and further
on the random test set. This is in line with our assumption that the conversation
test set has semantically closer different author utterance (A, Td )-pairs that make
the authorship verification task harder due to reduced spurious content cues (Section
5.3.1).

Representations trained with the conversation CC might encode less content in-
formation For the three test sets with the different CC levels, the standard devi-
ation of performance is largest for models trained without CC and smallest for models
trained with the conversation CC. This aligns with our expectation that texts in the
same conversation better approximate same content than two random texts or texts
taken from the domain domain (Section 5.3.1). Representations trained with domain
or no CC can rely more heavily on semantic features, which is advantageous for the no
and domain CC test sets. In contrast, models trained with conversation CC may de-
velop more content-agnostic representations that are similarly helpful in the no and
domain CC test sets. Good CAV & AV performance alone is not necessarily indicative
of a good representation of style. In Sections 5.4.2 and 5.4.3, we will further investigate
the quality of style representations and their content independence.

9We used seeds 103-105. A total of 5 out of 18 models did not learn. We re-trained those with different seeds.
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1 2

Anchor (A)
r u a fan of them or
something?

Are you one of
their fans?

Sentence (S)

Oh, and also that young
physician got an unflat-
tering haircut

Oh yea and that
young dr got a
bad haircut

Figure 5.2: STEL-Or-Content Task. The task is to match the anchor sentence (A1) to the sen-
tence that is written in the same style (S2), but is complicated by having to decide against the
sentence that has the same content (the new S1, i.e., “Are you one of their fans?”). To create
STEL-Or-Content instances, we take the original STEL instances (original A1-2, S1-2, i.e., the fig-
ure without manipulations) and move A2 to the sentence position with the different style (here:
the more formal A2 replaces the more formal S1).

5.4.2. STEL Task

We calculate the performance of the representations on the STEL framework (Weg-
mann and Nguyen, 2021).10 Here, models are evaluated on whether they are able to
measure differences in style across four known dimensions of style (formal vs. in-
formal style, complex vs. simple style, contraction usage and number substitution
usage). Models are tested on 1830 tasks of the same setup: Two “sentences” S1 and
S2 have to be matched to the style of two given “anchor” sentences A1 and A2. The task
is binary. Sentences can either be matched without reordering (A1-S1 & A2-S2) or with
reordering (A1-S2 & A2-S1). For example, consider the sentences in Figure 5.2 before
alterations. The correct solution to the task is to reorder the sentences, i.e., to match A1
with S2 because they both exhibit a more informal style and A2 with S1 because they
both exhibit a more formal style. The STEL sentence pairs (S1, S2) and (A1, A2) are al-
ways paraphrases of each other (in contrast to A and Td for the authorship verification
task which are only chosen to be about the same approximate topic, cf. 5.3.1). The an-
chor pairs and sentence pairs are randomly matched and are thus otherwise expected
to have no connection in content or topic. Representations can thus not make use of
learned content features to solve the task.

We display the STEL results for the ROBERTA models in Table 5.3. STEL performance is
comparable across all fine-tuned models — for all different CC levels and AV & CAV
setups. Compared to common non-neural representations (e.g., character 3-grams)
our fine-tuned ROBERTA model performs better (Wegmann and Nguyen, 2021). Sur-
prisingly, the overall STEL performance for the fine-tuned models is lower than that
of the original ROBERTA base model (Liu et al., 2019) and also than the cased BERT
base model (Wegmann and Nguyen, 2021). We would have expected the fine-tuned
models to improve not worsen their performance in representing common style di-
mensions. Thus, our fine-tuned models may have ‘unlearned’ some style information.

10https://github.com/nlpsoc/STEL, with data from Rao and Tetreault (2018) and Xu et al. (2016) and
with permission from Yahoo for the “L6 - Yahoo! Answers Comprehensive Questions and Answers ver-
sion 1.0 (multi part)”: https://webscope.sandbox.yahoo.com/catalog.php?datatype=l. Data and
code available with MIT License with exceptions for proprietary Yahoo data.

https://github.com/nlpsoc/STEL
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
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all formal, n = 815 complex, n = 815 nb3r, n = 100 c’tion, n = 100
o o-c o o-c o o-c o o-c o o-c

acc±σ acc±σ acc±σ acc±σ acc±σ acc±σ acc±σ acc±σ
org .80 .05 .83 .09 .73 .01 .94 .13 1.0 .00

c .71 .35 .83± .02 .64± .00 .57± .02 .13± .04 .61± .02 .04± .01 .91± .10 .00± .01
A d .73 .28 .84± .01 .56± .04 .69± .05 .05± .02 .61± .02 .03± .02 .98± .03 .00± .00

n .72 .22 .85± .01 .46± .04 .57± .01 .03± .01 .62± .04 .05± .02 .98± .01 .00± .00

c .71 .42 .81± .02 .69± .02 .59± .01 .24± .02 .65± .09 .03± .01 .99± .02 .04± .02
C d .71 .32 .82± .01 .61± .02 .57± .01 .12± .01 .64± .05 .03± .01 .99± .01 .01± .01

n .71 .24 .85± .00 .50± .02 .56± .01 .04± .01 .59± .03 .06± .01 .98± .04 .00± .00

Table 5.3: STEL and STEL-Or-Content Results. We display STEL accuracy across 4 style dimen-
sions (n = number of instances) for the same ROBERTA models as in Table 5.2: Per task setup (AV
- A, CAV - C) and content control level (conversation - c, domain - d, none - n), the performance
on the original (o) and the STEL-Or-Content task instances (o-c) are displayed. Per column, the
best performance is boldfaced. For the fine-tuned ROBERTA models, performance generally in-
creases on the STEL-Or-Content task compared to the original ROBERTA model (org).

In the remainder of this subsection, we analyze possible reasons for this STEL perform-
ance drop.

Performance stays approximately the same or improves for the formal/informal and
the contraction dimensions but drops for the complex/simple and the nb3r substitu-
tion dimensions. Based on manual inspection, we notice nb3r substitution to regularly
appear in specific conversations and for specific topics. Future work could investig-
ate whether the use of nb3r substitution is less consistent for one author than other
stylistic dimensions. As the nb3r dimension of STEL only consists of 100 instances,
future work could increase the number of instances. Further, we perform an error
analysis to investigate the STEL performance drop in the complex/simple dimension.
We manually look at consistently unlearned (i.e., wrongly predicted by the fine-tuned
but correctly predicted by the original ROBERTA model) or learned (i.e., wrongly pre-
dicted by the ROBERTA model and correctly predicted by the fine-tuned model) STEL
instances (see details in Appendix C.2.1). We find several problematic examples where
the correct solution to the task is at least ambiguous. We display two such examples
in Table 5.4. The share of examples with problematic ambiguities is higher for the un-
learned (50/55) than for the newly learned STEL instances (29/41). Generally, the num-
ber of complex/simple STEL instances with ambiguities is surprisingly high for both
the learned as well as the unlearned instances, consistent with the lower performance
of the models in this category. Several of the ambiguities found should be relatively
easy to correct in the future (e.g., spelling mistakes or punctuation differences).

5.4.3. Content-Independence of Style Representations

We are interested in representations that represent the style of a text. Since style and
content are often correlated (Gero et al., 2019; Bischoff et al., 2020), we not only tested
whether models are able to distinguish between texts written by different authors (in
Section 5.4.1) but also whether models are able to represent styles when the content
remains the same (Section 5.4.2). However, we have not tested whether models are
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Agg. GT Anchor 1 (A1) Anchor 2 (A2) Sentence 1 (S1) Sentence 2 (S2) Ambiguity

un ✓ TDL Group
announced in
March 2006, in
response to a
request [...]

[...] storm
names Alberto
Helene Beryl
Isaac Chris [...]

Palestinian voters in
the Gaza Strip [...]
were eligible to parti-
cipate in the election.

1. Palestinian voters
in the Gaza Strip [...]
were eligible to parti-
cipate in the election.

A1/A2 have
different
content

l ✗ [...] 51
Phantom [...]
received nom-
inations in that
same category.

[...] 1 phantom
[...] received
nominations
in the same
category.

[...] the Port Jackson
District Command-
ant could exchange
with all military land
with buildings on the
harbor.

[...] the Port Jackson
District Command-
ant could communic-
ate with all military
installations on the
harbour.

A2 spelling
mistake:
1 instead
of 51, S1
sounds
unnatural

Table 5.4: STEL Error Analysis. For the complex/simple STEL dimension, we display examples
of instances that were learned (l) or unlearned (un) by the fine-tuned ROBERTA models, but
upon manual inspection seemed potentially ambiguous. Under the column “Ambiguity”, we
describe why we think that the ground truth (GT) label might be incorrect or at least subject to
discussion. A ground truth (GT) of ✓ means that S1 matches with A1 and S2 with A2 in style,
while ✗ means S1 matches with A2 and S2 with A1.

more sensitive to style than content information. A style representation that is content-
independent would always be more sensitive to style than content information.

Different approaches have been used to test whether style representations encode un-
wanted content information, including (a) comparing performance on the authorship
verification task across domain (Boenninghoff et al., 2019b; Zhu and Jurgens, 2021),
(b) assessing performance on function vs. content words (Hay et al., 2020; Zhu and Jur-
gens, 2021) and (c) assessing performance on predicting domain labels using style rep-
resentations (Zhu and Jurgens, 2021). However, these evaluation methods have limita-
tions: Domain labels usually come from a small set of coarse-grained labels and func-
tion words have been shown to not necessarily be content-independent (Litvinova,
2020). Additionally, next to content, authorship verification might include other spuri-
ous features that help increase performance without representing style.

To test if models learn to prefer style over content, we introduce a variation to the
STEL framework — the STEL-Or-Content task. In the STEL-Or-Content task, we assess
whether models are more sensitive to style or content by presenting two text options
— one that closely matches the content and another that closely matches the style —
and evaluating which one the model selects. See an example in Figure 5.2. We create
the STEL-Or-Content instances from the original STEL instances. From one original
STEL instance (Section 5.4.2), we take the sentence that has the same style as A2 (here:
S1, also in more formal style) and replace it with A2. In Figure 5.2. The new task is to
decide whether A1 matches in style with the new S1 (i.e., “Are you one of their fans?”)
or with S2. The task is more difficult than the original STEL task as the new S1 is written
in a different style but has the same content and potentially high lexical overlap. The
representations will have to decide between giving ‘style or content’ more weight. This
setup is similar to the CAV task (Figure 5.1). The main differences to the CAV task are
(i) that we do not use same author as a proxy for same style but instead use the theory-
derived style dimensions from the STEL framework and (ii) that we control for content
with the help of paraphrases (instead of using only a topic proxy).
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We display the STEL-Or-Content results in Table 5.3. The performance for the new task
is low (< 0.5 which corresponds to a random baseline). However, the task is also very
difficult as lexical overlap is usually high between the anchor and the false choice (i.e.,
the sentence that was written in a different style but has the same content). Never-
theless, performance should only be considered in combination with other evaluation
approaches (Sections 5.4.1 and 5.4.2) as on this task alone models might perform well
because they punish same content information.

Models trained on the CAV task with the conversation CC level are the best at repres-
enting style independent from content The performance increases from an accur-
acy of 0.05 for the original ROBERTA model to up to 0.42± .01 for the representation
trained with the CAV task and the conversation CC. This ‘CAV conversation represent-
ation’ did not just learn to punish same content cues as demonstrated by its perform-
ance on the AV task and the STEL framework: (1) On the AV task, the representation
performed similarly on all three test sets. If the model had merely learned punish same
content cues, we would expect a clearer difference in performance, particularly be-
cause confounding content information should be more prevalent in the random test
set compared to the conversation test set. (2) The representation performed compar-
ably to the other representations on the STEL framework, where style information is
needed to solve the task but content information cannot be used.

5.5. Style Representation Analysis

To better understand what the learned style representations consider to be similar
styles, we analyze the best-performing style representation (ROBERTA trained on the
CAV task with the conversation CC and seed 106). We apply agglomerative clustering
to a sample of 5,000 CAV tasks of the conversation test set resulting in 14,756 unique
utterances. Based on an analysis of Silhouette scores (Appendix C.3), we group the
utterances into 7 clusters.

We find that 46.2% of utterance pairs written by the same author fall into the same
cluster, compared to 20.1% ± .0011 expected from random assignments among 7
clusters. As authors will have a certain variability to their style, a perfect clustering
according to general linguistic style would not assign all same author pairs to the same
cluster. In Table 5.5, we display examples for 4 out of 7 clusters. We manually looked
at a few hundred examples per cluster to find consistencies. We found clear consist-
encies within clusters in the punctuation (e.g., 97% of utterances have no last punctu-
ation mark in Cluster 3 vs. an average of 37% in the other clusters), casing (e.g., 67% of
utterances that use i instead of I appear in Cluster 4), contraction spelling (e.g., 22 out
of 27 utterances that use didnt instead of didn’t appear in Cluster 4), the type of apo-
strophe used (e.g., 90% of utterances use ‘ vs ' in Cluster 5 vs. an average of 0% in the
other clusters) and line breaks within an utterance (e.g., 72% of utterances in Cluster 7
include line breaks vs. an average of 22% in the other clusters). We mostly found such

11Calculated mean and standard deviation over 100 runs when randomly assigning the 14,756 utterances to
7 clusters of the same size.
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C # Consistencies Example

3 no last punctuation mark I am living in china, they are experiencing an enormous baby boom
4 punctuation / casing huh thats odd i'm in the 97% percentile on iq tests, the sat, and the act
5 ’ vs ' I assume it’s the blind lady?
7 linebreaks I admire what you're doing but [...]

I know I'm [...]

Table 5.5: Clusters for ROBERTA Trained on CAV with Conversation Content Control. We dis-
play one example for 4 out of 7 clusters. We mention noticeable consistencies within the cluster
(“Consistencies” column).

character-level consistencies — likely because they are easiest to spot manually. We
expect representations to also capture more complex stylometric information because
of their performance on the authorship verification and STEL tasks (Section 5.4). Fu-
ture work could analyze whether and what other stylistic consistencies are represented
by the models.

For comparison, we also cluster with the base ROBERTA model (see Appendix C.4).
The only three interesting ROBERTA clusters (i.e., clusters 2,3,4 that contain more than
three elements and not as many as 86.7% of all utterances), seem to mostly differ in
utterance length (average number of characters are 15 in Cluster 2 vs. in 1278 in Cluster
3) and in the presence of hyperlinks (84% of utterances contain ‘https://’ in Cluster 4
vs. an overall average of 2%). Average utterance lengths are not as clearly separated by
the clusters of the trained style representations.

5.6. Limitations and Future Work

We propose several directions for future research:

First, conversation labels are already inherently available in conversation corpora like
Reddit. However, it remains a difficulty to transfer the conversation CC to non-
conversation datasets. Moreover, even when using the conversation CC, content in-
formation might still be useful for authorship verification: If one person writes “my
husband” and another writes “my wife” within the same conversation, it is highly un-
likely that those utterances have been generated by the same person. With the recent
advances in semantic sentence embeddings, it might be interesting to train style rep-
resentations on CAV tasks with a new content control level: Two utterances could be
labelled as having the same content if their semantic embeddings are close to each
other (e.g., when cosine similarity is above a certain threshold).

Second, for the STEL-Or-Content task, the so-called “triplet problem” (Wegmann and
Nguyen, 2021) remains a potential problem. Consider the example in Figure 5.2. Here,
the STEL framework only guarantees that A1 is more informal than A2 and S2 is more
informal than S1. Thus, in some cases A2 can be stylistically closer to A1 than S2. How-
ever, we expect this case to be less prevalent: A2 would need to be already pretty close
in style to A1, or both S2 and S1 would need to be substantially more informal or formal
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than A1. In the future, removing problematic instances could alleviate a possible max-
imum performance cap.

Third, the representation models may learn to represent individual stylistic variation
as we use utterances from the same individual author as positive signals (cf. Zhu and
Jurgens, 2021). However, because the representation models learn with same author
pairs that are generated from thousands of authors, it is likely that they also learn con-
sistencies along groups of authors that use similar style features (e.g., demographic
groups based on age or education level, or subreddit communities). Future work could
explore how different CC levels and training tasks influence the type of styles that are
learned.

5.7. Conclusion

Recent advances in the development of style representations have increasingly used
training objectives from authorship verification (Hay et al., 2020; Zhu and Jurgens,
2021). However, representations that perform well on the Authorship Verification (AV)
task might do so not because they represent style well but because they latch on to
spurious content correlations. We train different style representations by controlling
for content (CC) using conversation or domain membership as a proxy for topic. We
also introduce the new Contrastive Authorship Verification setup (CAV) and compare it
to the usual AV setup. We evaluate our fine-tuned ROBERTA models on the recent STEL
framework (Wegmann and Nguyen, 2021) and surprisingly find that the fine-tuned
models might have unlearned some style information compared to the ROBERTA base
model. We propose an original adaptation of STEL to test whether learned represent-
ations favor style over content information. We find that representations that were
trained on the CAV setup with conversation CC represent style in a way that is more
independent from content than other fine-tuned models or the ROBERTA base model.
We demonstrate some of the learned stylistic differences via agglomerative cluster-
ing — e.g., the use of a right single quotation mark vs. an apostrophe in contrac-
tions.

In this work, we have introduced a successful approach for training neural text repres-
entations that are independent from content. Our findings demonstrate that style rep-
resentations trained with the CAV setup and conversation CC capture stylistic variation
more independently from content than previous approaches. To the best of our know-
ledge, this is the first work to evaluate neural text representations on their ability to en-
code linguistic style while disentangling it from content. Additionally, are are the first
to release stylistic text representations for broad use on the Hugging Face Hub.

Beyond the technical contributions, this work underscores the broader need for bet-
ter style representations in NLP. Future research should continue refining methods for
isolating style from content and improving evaluation methods like STEL to better rep-
resent stylistic nuances.
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Ethical Considerations

We use utterances taken from 100 subcommunities (i.e., subreddits) of the popular
online platform Reddit to train style representations with different training tasks and
compare their performance. With our work, we aim to contribute to the development
of general style representations that are disentangled from content. Style representa-
tions have the potential to increase classification performance for diverse demograph-
ics and social groups (Hovy, 2015).

The user demographics on the selected 100 subreddits are likely skewed towards par-
ticular demographics. For example, locally based subreddits (e.g., Canada, Singapore)
might be over-represented. Generally, the average Reddit user is typically more likely
to be young and male.12 Thus, our representations might not be representative of
(English) language use across different social groups. However, experiments on the
set of 100 distinct subreddits should still demonstrate the possibilities of the used ap-
proaches and methods. We hope the ethical impact of reusing the already published
Reddit dataset (Baumgartner et al., 2020; Chang et al., 2020) to be small but acknow-
ledge that reusing it will lead to increased visibility of data that is potentially privacy
infringing. As we aggregate the styles of thousands of users to calculate style repres-
entations, we expect it to not be indicative of individual users.

We confirm to have read and that we abide by the ACL Code of Ethics.
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Impact of STEL and Style Embedding Work

Since the STEL framework (Wegmann and Nguyen, 2021) and our Style Embedding
work (Wegmann et al., 2022) were published, our trained model has been actively used,
with an average of 1-4k model downloads per month, reaching up to 400k before the
ACL 2025 submission deadline. Our work attracted some attention from NLP research-
ers: Some work use STEL for evaluation (Chim et al., 2025; Patel et al., 2023), e.g., of
their own style embeddings. Others use our model to automatically evaluate if a gen-
erated text is close to a target style (Liu et al., 2023; Khan et al., 2023; Horvitz et al.,
2024a). Several works use our model as a baseline on different tasks relating to author-
ship attribution (Saxena et al., 2023; Huertas-Tato et al., 2024; Soto et al., 2024; Aggaz-
zotti et al., 2024; Michel et al., 2024), e.g., detection of machine-generated texts. Some
works incorporate our model in text generation pipelines to manipulate the style of the
generated text (Horvitz et al., 2024a,b; Liu et al., 2023), e.g., for style transfer.





Part IV
Paraphrasing Across Speakers

So far, I have defined NLP tasks requiring robustness (e.g., paraphrase classification)
and NLP tasks requiring sensitivity to language variation (e.g., authorship verification).
I showed that language variation might be important to consider at all stages of build-
ing LLMs—including tokenizers—and that neural text representations have the poten-
tial to better represent at least one aspect of language variation: linguistic style. In
Part IV of this dissertation, I focus on a task requiring robustness to language vari-
ation: detecting paraphrases across speaker turns in dialog. I provide annotation pro-
cedures that deal with disagreements among annotators, provide a dataset and exper-
iment with decoder and encoder models to detect paraphrases computationally. For
paraphrase span identification, encoder models profit from not being able to hallucin-
ate quotes. This part demonstrates that both humans and NLP models face significant
challenges when finding similarities in the referential meaning of utterances that vary
in language across speakers.
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6
What’s Mine becomes Yours:

Defining, Annotating and
Detecting Context-Dependent

Paraphrases in News Interview
Dialogs

This chapter is based on Wegmann, A., van den Broek, T. & Nguyen, D. (2024). What’s
Mine becomes Yours: Defining, Annotating and Detecting Context-Dependent Paraphrases
in News Interview Dialogs. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing (pp. 882-–912). https://doi.org/10.18653/v1/2024.
emnlp-main.52. See a video of the conference presentation here: https://youtu.be/9H-
YD7J0kvM.

Abstract

Best practices for high conflict conversations like counseling or customer
support almost always include recommendations to paraphrase the previ-
ous speaker. Although paraphrase classification has received widespread
attention in NLP, paraphrases are usually considered independent from
context, and common models and datasets are not applicable to dialog
settings. In this work, we investigate paraphrases across turns in dialog
(e.g., Speaker 1: “That book is mine.” becomes Speaker 2: “That book
is yours.”). We provide an operationalization of context-dependent para-
phrases, and develop a training for crowd workers to classify paraphrases

Author contributions: AW developed the idea, prepared the data, implemented the experiments, and wrote the manuscript.
TB and DN provided supervision and feedback throughout the entire research process.
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Guest: And people always prefer, of course, to see the pope as the principal celebrant of the
mass. So that’s good. That’ll be tonight. And it will be his 26th mass and it will be the 40th
or, rather, the 30th time that this is offered in round the world transmission. And it will be
my 20th time in doing it as a television commentator from Rome so.
Host: Yes, you’ve been doing this for a while now.

Figure 6.1: Context-Dependent Paraphrase in a News Interview. The interview host para-
phrases part of the guest’s utterance. It is only a paraphrase in the current context (e.g., doing
something 20 times and doing something for a while are not generally synonymous). Our annot-
ators provide word-level highlighting. The color’s intensity shows the share of annotators that
selected the word. Here, most annotators selected the same text spans; some included “from
Rome” as part of what is paraphrased by the host. We underline the paraphrase identified by our
fine-tuned DEBERTA token classifier.

in dialog. We introduce ContextDeP, a dataset with utterance pairs from
NPR and CNN news interviews annotated for context-dependent para-
phrases. To enable analysis on label variation, the dataset contains 5,581
annotations on 600 utterance pairs. We present promising results with in-
context learning and with token classification models for automatic para-
phrase detection in dialog.

6.1. Introduction

Repeating or paraphrasing what the previous speaker said has time and time again
been found to be important in human-to-human or human-to-computer dialogs:
It encourages elaboration and introspection in counseling (Rogers, 1951; Miller and
Rollnick, 2013; Hill, 1992; Shah et al., 2022), can help deescalate conflicts in crisis nego-
tiations (Vecchi et al., 2005; Voss and Raz, 2016; Vecchi et al., 2019), can have a positive
impact on relationships (Weger Jr. et al., 2010; Roos, 2022), can increase the perceived
response quality of dialog systems (Weizenbaum, 1966; Dieter et al., 2019) and gener-
ally provides tangible understanding-checks to ground what both speakers agree on
(Clark, 1996; Jurafsky and Martin, 2025).

Fortunately, in NLP, paraphrases have received wide-spread attention: Researchers
have created numerous paraphrase datasets (Dolan and Brockett, 2005; Zhang et al.,
2019; Dong et al., 2021; Kanerva et al., 2023), developed methods to automatically
identify (Zhang et al., 2019; Wei et al., 2022a; Zhou et al., 2025), and generate para-
phrases (Wubben et al., 2010; Zhou and Bhat, 2021), and used paraphrase datasets
to train semantic sentence representations (Reimers and Gurevych, 2019; Gao et al.,
2021) and benchmark LLMs (Wang et al., 2018; Srivastava et al., 2023). However, most
previous work (1) has focused on context-independent paraphrases, i.e., texts that are
semantically equivalent independent from the given context, and has not investigated
the automatic detection of paraphrases across turns in dialog, (2) has classified para-
phrases at the level of full texts even though paraphrases often only occur in portions
of larger texts (see also Figure 6.1), (3) uses a small number of 1–3 annotations per
paraphrase pair (Dolan and Brockett, 2005; Kanerva et al., 2023), (4) only annotate text
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Agreement Single Example with High Variation
Dataset Acc. α Shortened Example Vote

BAL-
ANCED

0.71 0.32
Guest: [...] Maybe the money will help.
Host: It can’t hurt, let’s put it that way.

9/20

RAN-
DOM

0.72 0.23

G: So both parties agree that we need to stop horrific acts of vi-
olence against animals. But everyone is standing behind this. It
is time to stop horrific acts of brutality on animals.
H: Britain’s Queen Elizabeth’s senior dresser writes "If her
majesty is due to attend an engagement in particularly cold
weather from 2019 onwards fake fur will be used to make sure
she stays warm." it’s a very stark example of a monarch following
public opinion in the U.K. which is moving away from fur and
it very much embraces orange85basehl!85.71428571428571pre-
vention of cruelty to the animals.

7/15

PARA 0.65 0.19

G: [...] it could be programmed in. But again, you’d have to set
that up as part of your flight plan.
H: So you’d have to say I’m going to drop to 5,000 feet, then go
back up to 35,000 feet, and you would have had to have done
that at the beginning.

8/15

Table 6.1: Agreement Scores as an Indicator of Plausible Variation. For each dataset, we dis-
play the “accuracy” with the majority vote (Acc.) which is the mean overlap of a rater’s classific-
ation with the majority vote classification excluding the current rater and Krippendorff (2019)’s
alpha (α) for the binary classifications by all raters over all pairs. The relatively low K’s α scores
can be explained by pairs where either label is plausible. We display such an example for each
dataset with the share of annotators classifying it it as a paraphrase (Vote).

pairs that are “likely” to include paraphrases using heuristics such as lexical similar-
ity (Dolan and Brockett, 2005), although, especially for the dialog setting, we can not
expect lexical similarity to be high for all or even most paraphrase pairs (e.g., the pair
in Figure 6.1 only overlaps in two words) and (5) either use short annotation instruc-
tions (Dolan and Brockett, 2005) that rely on annotator intuitions or long and complex
instructions (Kanerva et al., 2023) that limit the total number of annotators.

We address all five limitations with this work. First, we are, to the best of our knowledge,
the first to focus on operationalizing, annotating and automatically detecting context-
dependent paraphrases across turns in dialog. Dialog is a setting that is uniquely
sensitive to context (Grice, 1957, 1975; Davis, 2003), e.g., “doing this for a while now”
and “20th time [...] as a television commentator” in Figure 6.1 are not generally se-
mantically equivalent. Second, instead of classifying whether two complete texts A and
B are paraphrases of each other, we focus on classifying whether there exists a selection
of a text B that paraphrases a selection of a text A, and identifying the text spans that
constitute the paraphrase pair (e.g., Figure 6.1). Third, we collect a larger number
of annotations of up to 21 per item in line with typical efforts to address plausible hu-
man label variation (Nie et al., 2020b; Sap et al., 2022). Even though context-dependent
paraphrase identification in dialog might at first seem straight forward with a clear
ground truth, similar to other “objective” tasks in NLP (Uma et al., 2021), human an-
notators (plausibly) disagree on labels (Dolan and Brockett, 2005; Kanerva et al., 2023).
For example, consider the first text pair in Table 6.1. “[The money] can’t hurt” can be
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interpreted in at least two different ways: as a statement with approximately the same
meaning as “the money will help” or as an opposing statement meaning the money
actually won’t help but at least “It can’t hurt” either. Fourth, instead of using heurist-
ics to select text pairs for annotations, we choose a dialog setting where paraphrases
are relatively likely to occur: transcripts of NPR and CNN news interviews (Zhu et al.,
2021) since in (news) interviews paraphrasing or more generally active listening is en-
couraged (Clayman and Heritage, 2002; Hight and Smyth, 2002; Sedorkin, 2020). While
the interview domain shows some unique characteristics limiting generalizability (e.g.,
hosts using paraphrases to simplify the guest’s statements for the audience), the inter-
view domain is is suitable to demonstrate our new task and includes a diverse set of
topics and guests. Fifth, we develop an annotation procedure that goes beyond relying
on intuitions and is scalable to a large number of annotators: an accessible example-
centric, hands-on, 15-minute training before annotation.

In short, we operationalize context-dependent paraphrases in dialog with a defini-
tion and an iteratively developed hands-on training for annotators. Then, annotators
classify paraphrases and identify the spans of text that constitute the paraphrase. We
release ContextDeP (Context-Dependent Paraphrases in news interviews), a dataset
with 5,581 annotations on 600 utterance pairs from NPR and CNN news interviews. We
use in-context learning (ICL) with generative models like LLAMA 2 or GPT-4 and fine-
tune a DEBERTA token classifier to detect paraphrases in dialog. We reach promising
results of F1 scores from 0.73 to 0.81. Generative models perform better at classifica-
tion, while the token classifier provides text spans without parsing errors. We hope to
advance dialog based evaluations of LLMs and the detection of paraphrases in dialog.
Code1, annotated data2,3 and the trained model4 are publicly available for research
purposes.

6.2. Related Work

Paraphrases have most successfully been classified by encoder architectures with fine-
tuned classification heads (Zhang et al., 2019; Wahle et al., 2023) and more recently us-
ing in-context learning with generative models like GPT-3.5 and LLAMA 2 (Wei et al.,
2022a; Wang et al., 2022b; Wahle et al., 2023). To the best of our knowledge, only Wang
et al. (2022a) go beyond classifying paraphrases at the complete sentence level. They
use a DEBERTA token classifier to highlight text spans that are not part of a para-
phrase, i.e., the reverse of our task. However, they only consider context-independent
paraphrases taken and generated based on the MRPC dataset (Dolan and Brockett,
2005).

Paraphrase taxonomies commonly go beyond binary classifications to make finer dis-
tinctions between different types of paraphrases. These distinctions sometimes de-
pend on the context in which the text pair appears. Context can refer to different

1https://github.com/nlpsoc/Paraphrases-in-News-Interviews
2https://huggingface.co/datasets/AnnaWegmann/Paraphrases-in-Interviews
3This is in line with the license from the original data publication Zhu et al. (2021).
4https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog

https://github.com/nlpsoc/Paraphrases-in-News-Interviews
https://huggingface.co/datasets/AnnaWegmann/Paraphrases-in-Interviews
https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog
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What? Shortened Examples

Clear Contextual
Equivalence ⊆ CP

Guest: I know they are cruel.
Host: You know they are cruel.

Guest: We have been the punching bag of the president.
Host: The president has been using Chicago as a punching bag.

Approximate Contextual
Equivalence ⊆ CP

Guest: I’m like, "Fortnite", what is that? I don’t even know what it is –
Host: So, you weren’t even familiar?

Guest: My wife is going through the same thing herself.
Host: She’s also looking for work.

Table 6.2: Contextual Paraphrases (CP). We include text spans (⊆ CP) that range from clear to
approximate equivalence for the given context. Few examples are very clear. Deciding between
approximate equivalence and non-equivalence turns out to be a difficult task. In our dataset,
annotator agreement scores can be used as a proxy for the ambiguity of an item.

things, for example, the document a sentence appears in (Kanerva et al., 2023), general
encyclopedic knowledge (e.g., “Penelope” was the queen of Ithaca and wife of Odys-
seus in Greek mythology in Vila et al., 2014) and situational knowledge (e.g., “here”
refers to “Paris” in Vila et al., 2014). Bhagat and Hovy (2013) and Kovatchev et al. (2018)
emphasize that the context matters in determining what lexical operations, such as
word substitutions, create paraphrases. Shwartz and Dagan (2016) show that context
information can even reverse semantic relationships between phrases. Vila et al. (2014)
discuss text pairs that are equivalent only when one presupposes encyclopedic or situ-
ational knowledge, but exclude them as non-paraphrases. Further, to the best of our
knowledge, most previous work annotate sentence pairs without considering the doc-
ument context, with Kanerva et al. (2023) being the only exception, and no previous
work looking at detecting paraphrases in dialog.

Dialog act taxonomies aim to classify the communicative function of an utterance in
dialog and commonly include acts such as Summarize/Reformulate (Stolcke et al.,
2000; Core and Allen, 1997). However, generally, communicative function can be or-
thogonal to meaning equivalence. For example, the paraphrase from Table 6.2 “So you
weren’t even familiar?” would probably be a Declarative Yes-No-Question dialog
act (Stolcke et al., 2000), while the non-paraphrase “So you don’t have a problem with
... ?” in Table 6.3 would also be a Declarative Yes-No-Question. We see paraphrase
detection in dialog as complementary to investigating communicative function of ut-
terances.

6.3. Context-Dependent Paraphrases in Dialog

In NLP, paraphrases typically are pairs of text that are approximately equivalent in
meaning (Bhagat and Hovy, 2013), since full equivalence usually only applies for prac-
tically identical strings (Bhagat and Hovy, 2013; Dolan and Brockett, 2005) — with
some scholars even claiming that different sentences can never be fully equivalent
in meaning (Bhagat and Hovy, 2013; Clark, 1992; Bolinger, 1974). The field of NLP
has mostly focused on paraphrases that are context-independent, i.e., approximately
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What? Shortened Example

Additional Conclusions
or Facts ⊈ CP

Guest: If you’re not in our country, there are no constitutional protections
for you.
Host: So, you don’t have a problem with Facebook giving the government
access to the private accounts of people applying to enter the U.S.?

Isolated Equivalence ⊈
CP

Guest: There are militant groups out there firing against the military.
Host: Why did the army decide today to move in and clear out the camp?

Table 6.3: Non-Paraphrases in Dialog. We do not include text pairs (⊈ CP) that are semantically
related but where the second speaker does not actually rephrase a point the first speaker makes.
Frequent cases are text spans that might only be considered approximately equivalent when
taken out of context (underlined) and pairs that have too distant meanings, for example, when
the interviewer continues with the same or a related topic but adds further-reaching conclusions
or new facts.

equivalent without considering a given context (Dolan and Brockett, 2005; Wang et al.,
2018; Zhang et al., 2019). Some studies have operationalized paraphrases using more
fine-grained taxonomies, where context is sometimes considered (Bhagat and Hovy,
2013; Vila et al., 2014; Kovatchev et al., 2018). However, only a few datasets include
such paraphrases (Kovatchev et al., 2018; Kanerva et al., 2023) and to the best of our
knowledge none that focus on context-dependent paraphrases or dialog data.

We define a context-dependent paraphrase as two text excerpts that are at least ap-
proximately equivalent in meaning in a given situation but not necessarily in all non-
absurd situations.5 For example, consider the first exchange in Table 6.2. In this situ-
ation, “I” uttered by the first speaker and “You” uttered by the second speaker are
clearly signifying the same person. However, if uttered by the same speaker “I” and
“you” probably do not signify the same person. The text pair in Table 6.2 is thus equi-
valent in at least one but not in all non-absurd situations. The text excerpts forming
context-dependent paraphrases do not have to be complete utterances. In many cases
they are portions of utterances, see the highlights in Figure 6.1. Note that in dialog set-
tings, the second speaker should rephrase part of the first speaker’s point in the given
situation (context condition) and not just talk about something semantically related
(equivalence condition).

Context-dependent paraphrases range from clear (first example in Table 6.2) to ap-
proximate contextual equivalence (last example in Table 6.2). When the guest says
“My wife is going through the same thing”, it seems reasonable to assume that the host
is using contextual knowledge to infer that “the same thing” and “looking for a job”
are equivalent for the given exchange. Even though in this last example the meaning
of the two utterances could also be subject to different interpretations, we still con-
sider such cases to be context-dependent paraphrases for two reasons: (1) similar to
findings in context-independent paraphrase detection, limiting ourselves to very clear
cases would mostly result in uninteresting, practically identical strings and (2) we ulti-
mately want to identify paraphrases in human dialog, which is full of implicit contex-
tual meaning (Grice, 1957, 1975; Davis, 2003).

5This definition combines elements from Kanerva et al. (2021) and Bhagat and Hovy (2013)
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Preprocessed Sampled Released
# i # gh # i # gh # i # gh

all 34419 148522 1304 4450 480 600
NPR 11506 49065 423 1550 167 218
CNN 22913 99457 881 2900 313 382

Table 6.4: Dataset Statistics. Number of interviews (#i) and (guest, host)-pairs (# gh) respect-
ively after preprocessing (Section 6.4.1), random sampling (Section 6.4.2) and the selection of
paraphrase candidates for annotation (Section 6.4.2).

We specifically exclude common cases of disagreements between annotators6 that we
consider not to be context-dependent paraphrases in dialog, see Table 6.3. First, we
exclude text spans that might be considered approximately equivalent when they are
looked at in isolation but do not represent a paraphrase of the guest’s point in the given
situation (e.g., “the military” and “the army” in Table 6.3). Second, we exclude text
pairs that diverge too much from the original meaning when the second speaker adds
conclusions, inferences or new facts. In an interview setting, journalists make use of
different question types and communication strategies relating to their agenda (Clay-
man and Heritage, 2002) that can sometimes seem like paraphrases. For example in
Table 6.3, the host’s question “So, you ...?” could be read as a paraphrase with the goal
of checking understanding with the guest. However, it is more likely to be a declarative
conclusion that goes beyond what the guest said.

6.4. Dataset

Generally, people do not paraphrase each other in every conversation. We focus on the
news interview setting, because paraphrasing, or more generally active listening, is a
common practice for journalists (Clayman and Heritage, 2002; Hight and Smyth, 2002;
Sedorkin, 2020). We therefore also only consider whether the journalist (the interview
host) paraphrases the interview guest and not the other way around. We use Zhu et al.
(2021)’s MediaSum corpus which consists of over 450K news interview transcripts and
their summaries from 1999–2019 NPR and 2000–2020 CNN interviews.7 The topics of
the CNN and NPR news interviews (Zhu et al., 2021) are broadly centered around U.S.
politics (e.g., presidential or local elections, 9/11, foreign policy in the middle east),
sports (e.g., baseball, football), domestic natural disasters or crimes and popular cul-
ture (e.g., interviews with book authors).

We perform several preprocessing and sampling steps on the NPR and CNN news in-
terview dataset. In Table 6.4, we display the number of interviews and speaker turns
remaining after preprocessing (Section 6.4.1), after random sampling for lead author
annotations to find likely paraphrases (“Lead Author Annotation” in Section 6.4.2), and

6derived from pilot studies, see also Appendix D.3.1 and specifically Appendix Table D.3
7Released for research purpose, see https://github.com/zcgzcgzcg1/MediaSum?tab=readme-ov-
file.

https://github.com/zcgzcgzcg1/MediaSum?tab=readme-ov-file
https://github.com/zcgzcgzcg1/MediaSum?tab=readme-ov-file
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after random sampling for final annotations by crowd workers (“Paraphrase Candidate
Selection” in Section 6.4.2).

6.4.1. Preprocessing

We only include two-person interviews, i.e., a conversation between an interview host
and a guest. We remove interviews with fewer than four turns, utterances that only
consist of two words or of more than 200 words, and the first and last turns of inter-
views (often welcoming addresses and goodbyes). Overall, this leaves 34,419 interviews
with 148,522 (guest, host)-pairs. See Appendix D.2.1 for details on how we execute
these preprocessing steps.

6.4.2. Data Samples for Annotation

Even though paraphrases are relatively likely in the news interview setting, most ran-
domly sampled text pairs still do not include paraphrases. To distribute annotation
resources to text pairs that are likely to be paraphrases, previous work usually se-
lects pairs based on heuristics like textual similarity features, e.g., word overlap, edit
distance, or semantic similarity (Dolan and Brockett, 2005; Su and Yan, 2017; Dong
et al., 2021). These approaches are systematically biased towards selecting more obvi-
ous cases, e.g., text pairs that are lexically similar. However, this might exclude many
context-dependent paraphrases. For example, the guest and host utterance in Fig-
ure 6.1 have varying lengths, only overlap in three words and have a semantic similarity
score of only 0.138. Similar to Kanerva et al. (2023), we instead use a manual selection
of promising text pairs for annotation: We (1) randomly sample a set of text pairs and
(2) manually classify each of them to (3) select three sets of text pairs that vary in their
paraphrase distribution for the more resource-intensive crowd-sourced annotations:
the RANDOM, BALANCED and PARA set.

Lead author annotation We shuffle and uniformly sample 1,304 interviews. For each
interview, we sample a maximum of 5 consecutive (guest, host)-pairs. To select prom-
ising paraphrase candidates, the lead author then manually classifies all 4,450 text
pairs as paraphrases vs. non-paraphrases (see Appendix D.2.2 for details).9 In total,
about 14.9% of the sampled text pairs are classified as paraphrases by the lead author.
On a random set of 100 (guest, host)-pairs (RANDOM), we later compare the lead au-
thor’s classifications with the crowd-sourced paraphrase classifications (see Appendix
D.2.2). 89% of the lead author’s classifications are the same as the crowd majority. Note
that the lead author’s classifications do not affect the quality of the annotations re-
leased with the dataset but only the text pairs that are selected for annotation. How-
ever, using lead author annotations instead of lexical level heuristics should increase
paraphrase diversity in the released dataset beyond high lexical similarity pairs.

8using cosine-similarity and encodings from https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

9After experimenting with crowd workers, having a first pass for selection done by one of our team seemed
the best considering cost-performance trade-offs.

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Dataset size # paraphrases # anns/item

BALANCED 100 54 20.1
RANDOM 100 13 5.7
PARA 400 254 7.5

Total 600 321 9.3

Table 6.5: Dataset Statistics. For each dataset, we display the size, the number of paraphrases
according to the majority vote and the average annotations per text pair.

Paraphrase candidate selection We sample three datasets for annotation that differ
in their estimated paraphrase distributions (based on the lead author annotations):
BALANCED is a set 100 text pairs sampled for equal representation of paraphrases and
non-paraphrases. We annotate this dataset first with a high number of annotators per
(guest, host)-pair, to decide on a crowd worker allocation strategy that performs well
for paraphrases as well as non-paraphrases. RANDOM is a uniform random sample of
100 text pairs. One main use of the dataset is to evaluate the quality of crowd worker
annotations on a random sample. PARA is a set of 400 text pairs with an estimated 84%
of paraphrases according to lead author annotations designed to increase the variety of
paraphrases in our dataset. Details on the sampling of the three datasets can be found
in Appendix D.2.3.

6.5. Annotation

We first describe the annotation task (Section 6.5.1). Then, we discuss why the an-
notation task is difficult and a clear ground truth classification might not exist in many
cases (Section 6.5.2). Therefore, we dynamically collect many judgments for text pairs
that show initial high disagreements (Section 6.5.4). The annotation of utterance pairs
takes place in two rounds with Prolific crowd workers: (1) training crowd workers
(Section 6.5.3) and (2) annotating paraphrases with trained crowd workers (Section
6.5.4 and Section 6.5.5).

6.5.1. Annotation Task

Given a (guest, host) utterance pair, annotators (1) classify whether the host is para-
phrasing any part of the guest’s utterance and, if so, (2) highlight the paraphrase in the
guest and host utterance. This results in data points like the one in Figure 6.1. Note
that our setup differs from prior work, which usually involves classifying whether an
entire text B is a paraphrase of an entire text A (e.g., Dolan and Brockett, 2005). In-
stead, given texts A and B, our task is to determine whether there exists a selection of
words from text B that is a paraphrase of a selection of text A. Our annotators are not
only performing binary classification, but they also highlight the position of the para-
phrase. To the best of our knowledge, we are the first to approach paraphrase detection
in this way. Moreover, in contrast to previous work, the considered text pairs are usu-
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ally longer than just one sentence and are dialog turns. We also provide context in the
form of a date, names and an interview summary.

6.5.2. Plausible Label Variation

There can already be disagreements for relatively “easy” semantic tasks like annotat-
ing whether a sentence is about a certain topic (Andresen et al., 2020). An even more
difficult task is annotating context-independent paraphrases. Disagreements between
human annotators are common (Dolan and Brockett, 2005; Krishna et al., 2020; Kan-
erva et al., 2023) — even with extensive manuals for annotators (Kanerva et al., 2023).
In related semantic tasks like textual entailment,10 disagreements have been linked to
plausible label variations inherent to the task (Pavlick and Kwiatkowski, 2019; Nie et al.,
2020b; Jiang and de Marneffe, 2022).

Our task setup adds further challenges: First, instead of classifying full sentence pairs,
annotators have to read relatively long texts and decide whether any portion of the
text pair is a paraphrase. Second, while in previous work annotators usually had to
decide if two texts are generally approximately equivalent, they now need to identify
paraphrases in a highly contextual setting with often incomplete information.

As a result, similar to the task of textual entailment, we expect classifying context-
dependent paraphrases in dialog to not always have a clear ground truth. We display
examples of plausible label variation in Table 6.1. To handle label variation, common
strategies are performing quality checks with annotators (Jiang and de Marneffe, 2022)
and recruiting a larger number of annotators for a single item (Nie et al., 2020b; An-
dresen et al., 2020; Sap et al., 2022). We do both, see our approach in Section 6.5.3 and
Section 6.5.4.

6.5.3. Annotator Training

When annotating paraphrases, the instructions for annotators are often short, do not
explain challenges and rely on annotator intuitions (Dolan and Brockett, 2005; Lan
et al., 2017).11 In contrast, Kanerva et al. (2023) recently used an elaborate 17-page
manual. However, they relied on a total of only 6 expert annotators across all tasks with
up to three annotations per task (Section 6.5.2). We aim for a trade-off between short
intuition-based and long complex instructions that facilitates recruitment of a larger
number of annotators: an accessible example-centric, hands-on 15-minute training
of annotators that teaches our operationalization of context-dependent paraphrases
(Section 6.3). See Appendix Section D.3.1 for the iterative development process of the
annotator training, among others based on disagreements between lab members and
crowd workers in several pilot rounds.

See Appendix Section D.3.2 for the exact instructions we settled on for annotator train-
ing. We provide (1) a short paraphrase definition, (2) examples of context-dependent

10Paraphrase classification has been frequently equated to (bi-)directional entailment classification (Dolan
and Brockett, 2005; Androutsopoulos and Malakasiotis, 2010)

11For example, instructions are to rate if two sentences “mean the same thing” (Dolan and Brockett, 2005)
or are “semantically equivalent” (Lan et al., 2017).
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Shortened Examples

Guest: we don’t really know what went into their algorithm to make it turn out that way.
Host: We’re talking about algorithms, but should we be talking about the humans who design the al-
gorithms?

Guest: In Harrison County.
Host: In Harrison County. Are you [...]

Table 6.6: Low Quality Annotations. We show human highlights that can be considered wrong
or noisy. When absent, we underline the correct highlights.

paraphrases showing clear and approximate equivalence (cf. Table 6.2), (3) examples of
common difficulties with paraphrase classification in dialog (cf. Table 6.3 and Section
6.3), and use (4) a hands-on approach where annotators have to show understanding
by immediately classifying and highlighting paraphrases after receiving a new set of
instructions. Only once they make the right choice on what is (Table 6.2) and is not
a paraphrase (Table 6.3) and highlight the correct spans they are shown the next set
of instructions. Only annotators that undergo the full training and pass two compre-
hension and two attention checks are part of our released dataset. Overall, 49% of the
annotators who finished the training passed it.

6.5.4. Annotator Allocation

To the best of our knowledge, text pairs in paraphrase datasets receive a fixed num-
ber of 1, up to a maximum of 5 annotations (Kanerva et al., 2023; Zhang et al., 2019;
Lan et al., 2017; Dolan and Brockett, 2005). However, this might not be enough to rep-
resent the inherent plausible variation to the task (Section 6.5.2). We have each pair
in BALANCED annotated by 20–21 trained annotators to simulate different annotator
allocation strategies (Appendix D.3.5). Then, for RANDOM and PARA, we use a dy-
namic allocation strategy: Each pair receives at least 3 annotations. We dynamically
collect more annotations, up to 15, on pairs with high disagreement (i.e., entropy >
0.8). Overall, this results in an average of 9 annotations per text pair across our released
dataset.

6.5.5. Results

We discuss annotations results (Tables 6.1, 6.5, 6.7) on our datasets BALANCED, RAN-
DOM and PARA.

Classification agreement as an indicator of variation The agreement between an-
notators on whether a paraphrase is present is relatively low (Table 6.1). We inspect a
sample of 100 annotations on the RANDOM set and manually assess annotation qual-
ity. 90% of the annotations can be said to be at least plausible (see Table 6.6 for low
quality and Table 6.1 for plausible variation examples), which is in line with the fact
that we only use high quality annotators (Section 6.5.3). Further, we manually ana-
lyze the 42 annotations of ten randomly sampled annotators: Nine annotators con-
sistently provide high quality annotations, while the other annotator chooses “not a
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Dataset Guest Host
α A∩B

A∪B α A∩B
A∪B

BALANCED 0.42 0.51 0.48 0.63
RANDOM 0.53 0.63 0.53 0.64
PARA 0.43 0.50 0.50 0.64

Table 6.7: Agreement on highlights. For pairs that at least two annotators classified a para-
phrase, we display the average lexical overlap between the highlights (Jaccard Index displayed
as A∩B

A∪B ) and Krippendorff’s unitizingα over all words for guest and host highlights, see Krippen-
dorff (1995).

paraphrase” a few times too often (see Appendix D.3.8 for details). As a result, we as-
sume that most disagreements are due to the inherent plausible label variation of the
task (Section 6.5.2).

Higher agreement on paraphrase position Krippendorff’s unitizing α on the high-
lights is higher than in other tasks12 (see Table 6.7). We also calculate the “Intersection-
over-union” between the highlighted words (i.e., Jaccard Index), a common and inter-
pretable evaluation measure for annotator highlights (Herrewijnen et al., 2024; Men-
dez Guzman et al., 2022; Mathew et al., 2021; Malik et al., 2021). It seems that while
annotations vary on whether there is a paraphrase or not, they agree frequently on
the position of the possible paraphrase. On average, at least 50% of the highlighted
words are the same between annotations.13 Agreement is higher on the host utter-
ance, because on average the host utterance is shorter than the guest utterance (33 <
85 words).

Label variation is highest for paraphrases Between the datasets, classification
agreement is lowest for PARA. This is what we expected since it has the largest portion
of “hard” non-repetition paraphrases (see Appendix D.2.3). Krippendorff’s α is lower
for the RANDOM than the BALANCED set, even though we expected the RANDOM
set to include easier decisions for annotators (RANDOM includes more unrelated non-
paraphrases, see Appendix D.2.3). As the other agreement heuristic is relatively high on
RANDOM, the lower α values could be a result of Krippendorff’s measure being sens-
itive to imbalanced label distributions (Riezler and Hagmann, 2022), see also Table 6.5
displaying the imbalanced distribution for RANDOM.

12E.g., 0.41 for hate speech (Carton et al., 2018) or 0.35 for sentiment analysis (Sullivan Jr. et al., 2022).
Because of the different tasks these values are not exactly comparable.

13100% overlap in highlighting is uncommon. DeYoung et al. (2020) consider two highlights a match if Jac-
card is greater than 50%.
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Split # (guest, host)-pairs # annotations

Train 420 3896
Dev 88 842
Test 92 843

Total 600 5,581

Table 6.8: Split of Dataset. For each set, we show the number of text pairs and the total number
of annotations.

6.6. Modeling

In Table 6.8, we do a random 70, 15, 15 split of our 5,581 annotations, along the 600
unique pairs.

Token classifier Similar to Wang et al. (2022a), we fine-tune a large DEBERTA

model14 (He et al., 2021) on token classification to highlight the paraphrase positions
(for hyperparameters, see Appendix D.4.2). We train two models: using all 3,896 train-
ing annotations (“ALL” in Table 6.9) and using the majority aggregated training annota-
tions over the 420 unique (guest, host) training pairs (“AGGREGATED” in Table 6.9).
We consider a model to have predicted a paraphrase for a pair if at least one token is
highlighted with softmax probability ≥ 0.5 in both texts. For each model, we average
performances over three seeds.

In-context learning We further prompt the following generative models (see URLs in
Appendix D.4.1) to both classify and highlight the position of paraphrases: LLAMA 2 7B
and 70B (Touvron et al., 2023), VICUNA 7B (Zheng et al., 2023), MISTRAL 7B INSTRUCT

V0.2 (Jiang et al., 2023), OPENCHAT 3.5 (Wang et al., 2024), GEMMA 7B (Mesnard et al.,
2024), MIXTRAL 8X7B INSTRUCT V0.1 (Jiang et al., 2024) and GPT-415 (Achiam et al.,
2023). We design the prompt to be as close as possible to the annotator training using
a few-shot setup (Brown et al., 2020; Zhao et al., 2021) with all 8 examples shown during
annotator training. We also provide explanations in the prompt (Wei et al., 2022b; Ye
and Durrett, 2022) and use self-consistency by prompting the models 10 (GPT-4 and
LLAMA 70B: 3) times (Wang et al., 2023b). For the prompt and further hyperparameter
settings see Appendix D.4.1.

14microsoft/deberta-v3-large
15API calls where performed using the “gpt-4” model id in March 2024.

https://huggingface.co/microsoft/deberta-v3-large


IV

102 6. Paraphrases in News Interview Dialogs

Classification Highlighting
Model Extract ↓ F1 ↑ Prec ↑ Rec ↑ Extract ↓ Jacc Guest ↑ Jacc Host ↑
LLAMA 2 7B 1% 0.66 0.49 0.98 59% 0.34 0.44
VICUNA 7B 1% 0.29 0.67 0.19 32% 0.30 0.46
MISTRAL 7B INST. 3% 0.62 0.66 0.58 66% 0.40 0.51
OPENCHAT 3.5 0% 0.66 0.76 0.58 64% 0.46 0.50
GEMMA 7B 1% 0.64 0.66 0.63 48% 0.24 0.51
MIXTRAL 8X7B INST. 0% 0.74 0.73 0.74 65% 0.35 0.52
LLAMA 2 70B 0% 0.66 0.72 0.61 71% 0.29 0.56
GPT-4 0% 0.81 0.78 0.84 17% 0.67 0.71

DEBERTA AGG. - 0.73 0.67 0.81 - 0.52 0.66
DEBERTA ALL - 0.66 0.82 0.56 - 0.45 0.64

Table 6.9: Modeling Results. We boldface the best performance and underline the second best.
We report the extraction error of predictions from generative models. For classification, we
provide the F1, precision and recall score. For highlights, we include the Jaccard Index for both
guest and host utterances. Higher values are better (↑) except for extraction errors (↓). GPT-4 is
the best classification model. However, DEBERTA is the best highlight model as it does not lead
to any extraction errors.

Results For evaluation, we consider a pair to contain a paraphrase if it has been clas-
sified by a majority of crowd workers and a word to be part of the paraphrase if it
has been highlighted by a majority of crowd workers. We leave soft-evaluation ap-
proaches to future work (Uma et al., 2021), among others because of challenges in ex-
tracting label distributions for in-context learning in a straight-forward way (Hu and
Levy, 2023; Lee et al., 2023). See Table 6.9 for test set performances. Performances
for the token classifier are the mean over three seeds. Performances for the generat-
ive models are the majority vote for the 3–10 self-consistency calls. We display the F1
score for classification and, as before (Section 6.5.5), Intersection-Over-Union of the
highlighted words for guest and host utterance highlights (Jaccard Indices), see, for
example, DeYoung et al. (2020). For in-context learning, we also report how often we
could not extract the highlights or classifications from model responses. Note that the
test set contains 93 elements, so differences between models might appear bigger than
they are.

Overall, GPT-4 and MIXTRAL 8X7B achieve the best results in paraphrase classification.
For highlighting, our DEBERTA token classifiers and GPT-4 achieve the best overlap
with human annotations. However, due to problems with extracting highlights from
model responses (e.g., hallucinations, see Appendix D.4.3), our fine-tuned DEBERTA

token classifiers are probably the best choice to extract the position of paraphrases.
While the DEBERTA AGGREGATED model achieves higher F1 scores, the DEBERTA

ALL model has the highest precision out of all models. We provide our best-performing
DEBERTA AGGREGATED model (model with seed 202 and F1 score of 0.76) on the
Hugging Face Hub16 and use it in the following error analysis.

16https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog

https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog
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Predictions Shortened Examples
crowd majority GPT-4 DEBERTA

✗ ✗ ✓

Guest: He was the most famous guy in the world of
sports...
Host: The most famous Italian...

✓ ✗ ✓

Guest: A lot of them were the Bay Area influx that came
up and bought homes to flip. You know what flipping is,
right?
Host: Mm-hmm. Buying a house, improving

it, selling it out of profit .

Table 6.10: Model Errors. We show examples of prediction errors made by DEBERTA and GPT-
4. We display model predictions for paraphrases (✓) and non-paraphrases (✗) and compare it
to the crowd majority. If one model predicted a paraphrase the corresponding text spans are
underlined. For comparison, we also display the crowd majority highlights.

Error analysis We consider the best-performing classification and highlighting mod-
els for error analysis, i.e., GPT-4 and DEBERTA AGGREGATED. We manually analyze
a sample of misclassifications, for examples see Table 6.10. Overall, the classification
quality is better for GPT-4. The DEBERTA classifier finds more paraphrases (note that
DEBERTA AGGREGATED for seed 202 has a recall of 0.86) but also predicts more false
positives than GPT-4. For both models, the items with incorrect predictions also show
higher human disagreement. The average entropy for human classifications is lower
for the correct (0.45 for DEBERTA, 0.45 for GPT-4) than for the incorrect model predic-
tions (0.59 for DEBERTA, 0.67 for GPT-4). DEBERTA highlights shorter spans of text
(on average 6.6/6.2 words, compared to 16.7/10.9 for GPT-4 for guest/host respect-
ively), while GPT-4 usually highlights complete (sub-)sentences. GPT-4 highlights are
largely of good quality, however they often can not be extracted (see Appendix D.4.3).
The DEBERTA highlights can seem “chopped up” and missing key information (e.g.,
the original host highlights in Table 6.11 are just “Rudy Giuliani”, “coming” and “con-
versation”). We recommend classifying utterance pairs as a paraphrase when there
exist softmax probabilities ≥ 0.5 for both guest and host utterance, but then selecting
the highlights based on softmax probabilities lower than 0.5. Alternatively, the best
DEBERTA ALL model17 provides fewer but seemingly more consistent highlights (see
Appendix D.4.3). One possible reason for this could be that DEBERTA ALL was trained
on individual highlights provided by single annotators, rather than on aggregated high-
lights.

17https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog-ALL

https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog-ALL
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Shortened Example

Guest: ... then he goes on and references and makes mention of Rudy Giuliani three times in this
conversation
Host: And Rudy Giuliani was a private lawyer not a government official, so why is he coming up

so much in this conversation between two world leaders?

Table 6.11: Highlighting Differences. We show examples of highlights made by DEBERTA, GPT-
4 and human highlights. Lower intensity means fewer human annotators selected the word.
While GPT-4 struggles with providing highlights at all (cf. extraction error in Table 6.9), DE-
BERTA highlights tend to be too sparse (just “Rudy Giuliani”, “coming” and “conversation” in
the host utterance). Here, we also highlight words, when the softmax probability is > 0.4418 in-
stead of ≥ 0.5. On the complete test set, this also increases the mean Jaccard Index (by 0.06/0.01
for guest/host compared to Table 6.9).

6.7. Conclusion

A majority of work on paraphrases in NLP has looked at the semantic equivalence of
sentence pairs in context-independent settings. However, the human dialog setting
is highly contextual and typical methods fall short. We provide an operationalization
of context-dependent paraphrases and an up-scalable hands-on training for annotat-
ors. We demonstrate the annotation approach by providing 5,581 annotations on a
set of 600 turn pairs from news interviews. Next to paraphrase classifications, we also
provide annotations for paraphrase positions in utterances. In-context learning and
token classification both show promising results on our dataset. With this work, we
contribute to the automatic detection of paraphrases in dialog. We hope that this will
benefit both NLP researchers in the creation of LLMs and social science researchers
in analyzing paraphrasing in human-to-human or human-to-computer dialogues on
a larger scale.

Limitations

Even though the number of our unique text pairs is relatively small, we release a high
number of high quality annotations per text pair (5,581 annotations on 600 text pairs).
Releasing more annotations on fewer “items” (here: text pairs), has increasingly been
more common in NLP (Nie et al., 2020b; Sap et al., 2022). Further, big datasets become
less necessary with better generative models: Using only eight paraphrases pairs in
our prompt already led to promising results. We further use the full 3,896 annotations
from the training set to train a token classifier showing competitive results with the
open generative models. However, the token classifier and other potential fine-tuning
approaches would probably profit from a bigger dataset.

Even though our dataset of news interviews showed frequent, different and diverse
occurrences of paraphrasing, it is likely not representative of paraphrasing behavior

18This is only for illustrative purposes. For the main results we used ≥ 0.5. For this figure, we selected 0.44 as
it led to the biggest gain in the Jaccard Index on the test set.



6.7. Conclusion

IV

105

in conversations across different contexts and social groups. In the future, we aim to
expand our dataset with further out-of-domain items.

Our data creation process was not aimed at scalability. While our developed annotator
training procedure can easily be scaled to a larger group of crowd workers, we manually
selected text pairs for annotation. Future work could scale this by skipping manual
selection and accepting a more imbalanced dataset or using our trained classifiers as a
heuristic to identify likely paraphrases.

Even though we carefully prepared the annotator training and took several steps to en-
sure high-quality annotations, there remain several choices that were out of our scope
to experiment with, but might have improved quality even more. For example, ex-
perimenting with different visualizations of paraphrase highlighting, text fonts, giving
annotators an option to add confidence scores for classifications (e.g., as done in An-
dresen et al., 2020) and so on.

We only use one prompt that is as close as possible to the instructions the human an-
notators receive. We use the same prompt with the exact same formatting for all differ-
ent generative LLMs. However, experimenting with different prompts might improve
performance (Weng, 2023) and some models might benefit from certain formatting or
phrasing. We leave in-depth testing of prompts to future work. Further, it might be
possible to improve the performance of our DEBERTA model, through providing con-
textual information (like speaker names and interview summary). Currently, these are
only provided to the generative models.

In this work we collect a high number of human annotations per item and highlight
the plausible label variation in our dataset. However, we use hard instead of soft-
evaluation approaches (Uma et al., 2021) for the computational models. We do this
because, among others, extracting label distributions for in-context learning is chal-
lenging (Hu and Levy, 2023; Lee et al., 2023). We leave the development of a soft eval-
uation approach to future work but want to highlight the potential of our dataset here:
The high number of annotations per item enables the modeling of classifications and
text highlights as distributions, similar to Zhang and de Marneffe (2021). Further, our
dataset provides anonymized unique ids for all annotators and enables modeling of
different perspectives, e.g., with similar methods to Sachdeva et al. (2022) and Deng
et al. (2023).

We do not differentiate between different communicative functions, intentions or
strategies that affect the presence of paraphrases in a dialog. This is relevant as para-
phrases might, for example, be a conscious choice by interviewers (Clayman and Her-
itage, 2002) or an unconscious occurrence similar to how speakers align their linguistic
choices when referring to objects discussed (Xu and Reitter, 2015; Garrod and Ander-
son, 1987). We do not differentiate between intentional and unintentional19 para-
phrases and do not ask why a speaker utters a paraphrase in a given situation. Instead,

19We address an aspect of intentionality in our annotation process. In pilot studies, annotators occasionally
labeled text spans as paraphrases merely because they referred to the same object with the same or a
related term (cf. Appendix Table D.3). While these references might appear to be paraphrases when studied
in isolation, they more likely present a practical conversation strategy to discuss similar topics rather than
a deliberate attempt to rephrase what the guest said. To prevent such overidentification, our annotator
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we provide an outline of the general class of context-dependent paraphrases in dialog
that lays the groundwork for further, fine-grained distinctions.

Ethical Considerations

We hope that the ethical concerns of reusing a public dataset (Zhu et al., 2021) are
minimal, especially since the CNN and NPR interviews are between public figures and
were broadcast publicly, with consent, on national radio and TV.

Our dataset might not be representative of English paraphrasing behavior in dialogs
across different social groups and contexts as it is taken from U.S. news interviews with
public figures from two broadcasters. We caution against using our models without
validation on out-of-domain data.

We performed several studies with U.S.-based crowd workers. We paid participants
a median of ≈ 11.41$/h which is above federal minimum wage. crowd workers con-
sented to the release of their annotations. We do not release identifying ids of crowd
workers.

We confirm to have read and that we abide by the ACL Code of Ethics. Beside the men-
tioned ethical considerations, we do not foresee immediate risks of our work.
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7
Conclusion

In this section, I summarize the main findings and implications of my dissertation
(Section 7.1 & Section 7.2) and discuss future research directions inspired by these find-
ings — including those that I plan to pursue in my postdoc (Section 7.3).

7.1. Main Findings

In this section, I summarize the main findings of this dissertation, following the order
of the research questions introduced in Section 1.1 of Chapter 1.

RQ1: How do different key algorithmic decisions for tokenizers influence
the performance on downstream tasks: Tasks requiring robustness to lan-
guage variation and tasks requiring sensitivity to language variation?

In Chapter 3, I introduce the notion of tasks that require robustness to language vari-
ation (e.g., for semantic tasks like natural language inference, labels do not depend on
whether a text uses British or American spelling) and tasks that require sensitivity to
language variation (e.g., for form-based tasks like authorship verification, labels de-
pend on whether a text uses British or American spelling). Then, I investigate how key
algorithmic decisions for tokenizers (i.e., fitting corpus, pre-tokenizer and vocabulary
size) impact downstream model performance. I make three practical suggestions for
selecting tokenizer settings: (1) Pay the most attention to the pre-tokenizer. It influ-
ences how Unicode Character Categories can be combined, and how many different
words are ultimately part of the vocabulary. (2) Choose a bigger vocabulary size for
settings that require sensitivity to language variation. (3) Use a small machine learning
classifier to test the effect of different tokenizers on tasks robust and sensitive to lan-
guage variation.

My experiments show that language variation should be considered at all stages
of building LLMs, down to the very basic building blocks. I motivate why tokenizers
specifically are likely to be sensitive to language variation. The distinction between

109
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tasks requiring robustness to language variation and sensitivity to language variation
demonstrate the complexity of juggling different requirements for varying task types
when considering language variation.

RQ2a: How can we evaluate whether text representations are sensitive to
changes in linguistic style?

In Chapter 4, I investigate how to evaluate whether linguistic style is encoded in text
representations. I propose STEL, a task framework to evaluate NLP methods on their
sensitivity to style shifting, when referential meaning is constant. Drawing from style
literature, I create four set of tasks relating to four dimensions of style. I find that
neural representations outperform vanilla feature-based representations like charac-
ter 3-grams and function word frequencies in their sensitivity to well-established di-
mensions of style. Out of the investigated text representation methods, ROBERTA (Liu
et al., 2019) is the most sensitive to style when referential meaning stays the same.

In this work, I identify a lack of evaluation approaches that measure the sensitivity
of NLP methods to changes in linguistic style. The few existing evaluation approaches
are typically application-specific, often not based in style literature and tend to be cor-
related with referential meaning. With STEL, I present the first evaluation approach
that assesses NLP methods on well-established dimensions of style while controlling
for referential meaning correlations. To the best of my knowledge, I am the first to sys-
tematically compare a variety of different style measuring methods on a linguistically
informed benchmark on style. Any NLP method that can compare texts can be evalu-
ated on STEL.

RQ2b: How can we build neural representations of linguistic style that are
disentangled from referential meaning?

In Chapter 5, I investigate how to build neural text representations that are sensitive to
linguistic style but not sensitive to referential meaning. I use a contrastive fine-tuning
task on ROBERTA (Liu et al., 2019) that learns to place texts written by the same author
closer together and texts written by different authors further apart. The assumption is
that two texts written by the same author are more likely to be written in the same style
than two texts written by different authors. In contrast to previous approaches, I aim to
train text representations that encode well-established dimensions of style using texts
written by different authors extracted from the same conversation as “hard negatives”.
The underlying assumption is that texts written in the same conversation are more
likely to be about the same topic. I evaluate the representations on their sensitivity to
linguistic style with the STEL framework. I further introduce a variation to STEL that
tests whether representations are more sensitive to shifts in linguistic style or to shifts
in referential meaning. Compared to other approaches, I reach a higher independence
from referential meaning with my contrastive approach using hard negatives.

With this chapter, I provide a promising approach to train neural text
representations that are independent from referential meaning. To the best of my
knowledge, I am the first to release stylistic text representations for broad use on the
Hugging Face hub. My style embeddings have been appreciated by the community1

1Reaching 400k downloads on Hugging Face before the ACL 2025 submission deadline.
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— in part due to their improved independence from referential meaning compared to
previous methods (Patel et al., 2023, 2024; Horvitz et al., 2024b).

RQ3: How can we detect paraphrases across speakers in dialog?

In Chapter 6, I introduce the task of context-dependent paraphrase detection across
speaker turns in dialog. I motivate the task in relation to active listening, give a defini-
tion and explain ambiguities in annotation. I iteratively develop and provide a training
for crowd workers to classify paraphrases in dialog and introduce a dataset with ut-
terance pairs from NPR and CNN news interviews annotated by up to 21 annotators
for context-dependent paraphrases. I reach promising results with fine-tuned encoder
models as well as with in-context learning with decoder models. When identifying text
spans that constitute paraphrase pairs, encoder models profit from not being able to
hallucinate quotes.

Dialog is a setting that is uniquely sensitive to context (Grice, 1957, 1975; Davis,
2003) and makes matching the same referential meaning across speaker turns espe-
cially difficult. To the best of my knowledge, I am the first to operationalize, annot-
ate and automatically detect context-dependent paraphrases across turns in dialog.
I provide the annotator instructions, the annotated dataset and the best performing
encoder models to the NLP community. My work demonstrates that both humans
and NLP models face significant challenges when finding similarities in the referential
meaning of utterances that vary across speakers.

7.2. Summing Up

In my dissertation, I have worked with the following overarching motivation

Motivation: Develop NLP methods that account for language variation.

I address this motivation by (Part II) evaluating key algorithmic choices of a basic LLM
building block — tokenizers — on their sensitivity and robustness to language vari-
ation; (Part III) developing encoder models that are sensitive to one aspect of language
variation: linguistic style; and (Part IV) detecting paraphrases in dialog when language
varies across speakers. Thus, with this dissertation, I contribute to efforts that make
NLP models more sensitive to language variation (in Parts II and III) and more robust
to language variation (in Part II and IV). However, this dissertation is just one drop in
the proverbial sea of open research questions when it comes to accounting for lan-
guage variation in NLP — that is, (1) making models sensitive to form- and style-based
differences and (2) making models robust to form and style-based differences. I hope
that this work encourages the NLP community to dedicate more attention and effort
to accounting for language variation in NLP methods.
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7.3. Future Research

I provide some ideas and plans for future research based on the work in and insights of
my dissertation.

Fostering constructive online conversations This dissertation has been funded by
the NWO Digital Society research program under the title “The Power of Words: The
Role of Mediators’ Language in Increasing Intergenerational Empathy in Online Dis-
cussions”.2 The overarching aim of the project is to develop computational interven-
tions that can bring different social groups together online. In line with this goal,
Part III of this dissertation focuses on computationally modeling the linguistic styles
of texts, motivated by the idea that helping social groups adapt to each other’s writing
styles in online conversations might help reduce polarization. More broadly, modeling
linguistic style can offer insights into the community dynamics in which online con-
versations are embedded. For instance, it can help track the emergence of linguistic
norms in a community and measure how closely a user aligns with them (Danescu-
Niculescu-Mizil et al., 2013b; Gelfand et al., 2024). Further, I study paraphrases in dia-
log with the motivation that paraphrasing in online conversations might help people to
listen to each other more actively. I develop novel methods to detect when people are
saying the same thing in different ways (cf. Paraphrase detection across speaker turns
in Chapter 6). In the future, these methods could enable computational interventions
that might help foster more constructive online conversations: Adapting one’s speech
to align with that of a conversation partner has been shown to promote more positive
evaluations such as perceived cooperativeness in verbal interactions (Giles et al., 1991).
Further, I am particularly optimistic about paraphrasing-based interventions, as para-
phrasing is a proven practice in verbal conflict resolution (cf. Chapter 6).

Applying developed methods to research questions in sociolinguistics In this dis-
sertation, I discuss linguistic style and language variation in ways common to sociolin-
guistics (cf. Introduction Chapter 1 and Background Chapter 2.2). While my research is
also motivated by typical sociolinguistic goals (e.g., understanding conversational in-
teractions and identity construction, cf. Chapter 4), I focus on developing NLP meth-
ods to measure when language varies and referential meaning stays the same. How-
ever, I do not yet explicitly connect it to the social aspects that sociolinguistics is cent-
rally concerned with. Future work could further develop this direction as a way that
NLP methods can contribute to sociolinguistic research (Nguyen, 2025). For example,
my style embedding model could be used to measure and study language accommod-
ation3 — that is, how speakers adapt their speech to their conversation partners (Giles
et al., 1991). Much of the existing work on accommodation focuses on a narrow set of
linguistic features (e.g., pronoun usage, part-of-speech categories or utterance length)
(Danescu-Niculescu-Mizil et al., 2011; Giles et al., 1991) which might overlook various
types of shift in linguistic style. In contrast, a style embedding model could capture

2with grant number 410.19.007, see also https://www.nwo.nl/en/projects/41019007
3A related term is “alignment”. For example, Garrod and Anderson (1987) study the alignment between

interlocutors in referring expressions when referring to moving pieces in a maze.

https://www.nwo.nl/en/projects/41019007
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a wider range of stylistic variation. Similar to theories and findings in verbal settings
— or studies limited to narrower linguistic indicators — one could investigate whether
adapting to another’s linguistic style increases social approval online. Apart from lin-
guistic style, accommodation can also occur at the level of content (Ferrara, 1991). My
paraphrase classification model (cf. Chapter 6) could support research into whether
rephrasing a speaker’s statement lead to elaboration by discussion partners in online
contexts. Finally, my work on tokenization (cf. Chapter 3) can inform the design of
variation-sensitive tokenizers that might improve a models’ ability to automatically
annotate texts (Nguyen, 2025; Pavlovic and Poesio, 2024), particularly those containing
certain types of language variation, such as dialectal variation.

Evaluating how NLP methods account for language variation Over the course of my
dissertation, I identified a significant gap in NLP literature: the lack of evaluation meth-
ods that assess how well NLP models account for language variation (cf. Chapter 4). I
address a part of this problem in Chapter 4 and Chapter 5 when developing STEL to
evaluate NLP models in their sensitivity to shifts in linguistic style. I further intro-
duce a task suite that allows to test NLP methods in their sensitivity and robustness
to language variation in in Chapter 3. In the months after finishing my PhD, I aim to
valorize these efforts by releasing a Python package that make my evaluation meth-
ods easily accessible to the NLP community. Overall, evaluation methods are crucial
to develop NLP methods that are more sensitive and robust to language variation in
the future. Unfortunately, my developed evaluation methods do not cover the wide
range of language variation in English: For example, one could consider a wider range
of narrow style features (e.g., inspired by features in Table 2.1 in Section 2.2) and sys-
tematically evaluate how they are considered in NLP models. Additionally, it would be
interesting to investigate how models handle language varieties associated with differ-
ent geographical regions, ethnicities, age groups, genders and social classes. Further,
one could also consider language variation for more languages than English.

Going beyond language variation in English In this dissertation, I focus on models
primarily trained on English data and consider variation only within the English lan-
guage. This aligns with a broader pattern in NLP that makes English the most studied
and represented language by far — however, other languages have recently received
more attention (Joshi et al., 2020; Ranathunga and de Silva, 2022; Ranathunga et al.,
2023). Of course language variation is pervasive in all natural languages (Ball et al.,
2023). Future work could extend evaluation methods to other languages — including
STEL (Chapter 4) and my task-based evaluation suite (Chapter 3) — as well as develop
style embeddings (Chapter 5) and paraphrase detection methods (Chapter 6) for more
languages. Further, it could be interesting to evaluate the capabilities of other types
of NLP methods and models — such as multilingual or multimodal language models
— on tasks requiring sensitivity and robustness to language variation — within Eng-
lish and across languages and modalities. Additionally, code-switching (Doğruöz et al.,
2021) — where speakers alternate between two or more languages within a single ut-
terance (e.g., “Thanks voor de steun tijdens mijn PhD.”) — brings unique challenges
for language models and evaluation approaches. I encourage future work in NLP to
account for language variation for more languages and modalities.
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Privacy and integrating social factors into NLP Integrating more language diversity
and with it social factors into NLP is a double-edged sword: There are clear advantages
of integrating more diversity in NLP models and specifically representing the variet-
ies of minorities to increase fairness and representativeness of NLP models (Hovy and
Yang, 2021; Bird and Yibarbuk, 2024; Markl et al., 2024; Grieve et al., 2025). However,
making NLP models more sensitive to social factors could also make them a threat to
privacy across social groups. The performance of machine learning approaches for
tasks like author profiling could increase. This results in a large potential for misuse,
for example: (1) Author profiles could be used to identify and profile individuals or
political dissenters (Hovy and Spruit, 2016), (2) Author profiling could be used for pred-
atory ad targeting, which might show gambling ads to vulnerable groups or not show
job postings to certain social groups (Dudy et al., 2021). (3) Author profiles could lead
to data leakage, for example making health conditions recoverable for insurance com-
panies that might increase their rates for certain individuals (Dudy et al., 2021). This
conflict between privacy and fairness has been described as one of the “dual-use prob-
lems” in NLP by Hovy and Spruit (2016). In my work, I aim to improve fairness without
compromising individual privacy and safety, but I acknowledge that progress in one
might sometimes come at the expense of the other. I want to encourage researchers in
the NLP community to engage with the dual-use problem more actively and work on
techniques to make the design of language models more sensitive to human values as
suggested in Dudy et al. (2021).

Language variation in datasets There are several aspects of NLP model construction
that I have not investigated, but that are crucial when accounting for language vari-
ation in NLP. One key aspect is the datasets used at multiple stages for NLP models, in-
cluding pre-training, fine-tuning, post-training and evaluation. Many current dataset
construction strategies rely on dataset size rather than quality or diversity. However,
dataset composition for (post-)training might lead to biases (Bender and Friedman,
2018; Bukharin et al., 2024) and a lack of robustness in how different social groups are
treated. This is especially relevant in the age of CHATGPT, where increasing amounts
of text data are now generated by language models and circulated online. As generated
data becomes increasingly prevalent, it risks being re-ingested — both intentionally
(Wang et al., 2023c) and unintentionally — into future training datasets. If linguistic
diversity is not explicitly considered, this could lead to a narrowing of the linguistic
range represented in models: models trained on increasingly homogeneous, generated
data might reproduce and reinforce dominant varieties, ultimately crowding out less
common linguistic forms (Guo et al., 2024). To address this, I will join Dong Nguyen’s
DataDivers ERC project4 for a two-year postdoc where we will investigate how data-
set diversity influences model representativeness, fairness and robustness. During the
postdoc, I am aiming to specifically examine the role of linguistic and stylistic variation
in datasets.

4https://datadivers-erc.github.io/

https://datadivers-erc.github.io/
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Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, An-

https://doi.org/10.18653/v1/2021.wnut-1.55
https://aclanthology.org/W09-0625/
https://aclanthology.org/W09-0625/
https://wbooks.com/winkel/nederland/utrechtenaren/
https://wbooks.com/winkel/nederland/utrechtenaren/
https://aclanthology.org/2025.coling-main.410/
https://aclanthology.org/2025.coling-main.410/
https://aclanthology.org/2025.coling-main.410/
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1016/j.avb.2004.10.001
https://doi.org/10.1016/j.avb.2004.10.001
https://doi.org/10.1016/j.avb.2019.08.002
https://doi.org/10.1016/j.avb.2019.08.002
https://aclanthology.org/2025.coling-main.400/
https://aclanthology.org/2025.coling-main.400/
https://doi.org/10.4236/ojml.2014.41016
https://doi.org/10.4236/ojml.2014.41016


VI

150 Bibliography

tônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272.

Svitlana Volkova, Theresa Wilson, and David Yarowsky. 2013. Exploring demographic
language variations to improve multilingual sentiment analysis in social media. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1815–1827, Seattle, USA. Association for Computational Linguistics.

Chris Voss and Tahl Raz. 2016. Never split the difference: Negotiating as if your life
depended on it. Random House, London, UK.

Jan Philip Wahle, Bela Gipp, and Terry Ruas. 2023. Paraphrase types for generation
and detection. In Proceedings of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 12148–12164, Singapore, Singapore. Association for
Computational Linguistics.

Jan Philip Wahle, Terry Ruas, Yang Xu, and Bela Gipp. 2024. Paraphrase types elicit
prompt engineering capabilities. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages 11004–11033, Miami, USA. Associ-
ation for Computational Linguistics.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner. 2019. Do NLP
models know numbers? Probing numeracy in embeddings. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 5307–5315, Hong Kong, China. Association for Computational Linguistics.

Mengting Wan and Julian McAuley. 2018. Item recommendation on monotonic be-
havior chains. In Proceedings of the 12th ACM Conference on Recommender Systems
(RecSys), pages 86–94, Vancouver, Canada. Association for Computing Machinery.

Mengting Wan, Rishabh Misra, Ndapa Nakashole, and Julian McAuley. 2019. Fine-
grained spoiler detection from large-scale review corpora. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 2605–2610,
Florence, Italy. Association for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2019. SuperGLUE: A stickier benchmark for
general-purpose language understanding systems. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), Vancouver, Canada. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bow-
man. 2018. GLUE: A multi-task benchmark and analysis platform for natural lan-
guage understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Bel-
gium. Association for Computational Linguistics.

Andrew Wang, Cristina Aggazzotti, Rebecca Kotula, Rafael Rivera Soto, Marcus Bishop,
and Nicholas Andrews. 2023a. Can authorship representation learning capture

https://doi.org/10.1038/s41592-019-0686-2
https://aclanthology.org/D13-1187/
https://aclanthology.org/D13-1187/
https://www.amazon.com/Never-Split-Difference-Negotiating-Depended/dp/0062407805
https://www.amazon.com/Never-Split-Difference-Negotiating-Depended/dp/0062407805
https://doi.org/10.18653/v1/2023.emnlp-main.746
https://doi.org/10.18653/v1/2023.emnlp-main.746
https://doi.org/10.18653/v1/2024.emnlp-main.617
https://doi.org/10.18653/v1/2024.emnlp-main.617
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.1145/3240323.3240369
https://doi.org/10.1145/3240323.3240369
https://doi.org/10.18653/v1/P19-1248
https://doi.org/10.18653/v1/P19-1248
https://papers.neurips.cc/paper_files/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://papers.neurips.cc/paper_files/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1162/tacl_a_00610
https://doi.org/10.1162/tacl_a_00610


Bibliography

VI

151

stylistic features? Transactions of the Association for Computational Linguistics,
11:1416–1431.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. 2024.
OpenChat: Advancing open-source language models with mixed-quality data. In
Proceedings of the International Conference on Learning Representations (ICLR), Vi-
enna, Austria. Curran Associates, Inc.

Shuohang Wang, Ruochen Xu, Yang Liu, Chenguang Zhu, and Michael Zeng. 2022a.
ParaTag: A dataset of paraphrase tagging for fine-grained labels, NLG evaluation,
and data augmentation. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 7111–7122, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng Zou, Xin Zhou, Jiacheng Ye, Yongxin
Zhang, Rui Zheng, Zexiong Pang, Qinzhuo Wu, Zhengyan Li, Chong Zhang, Ruo-
tian Ma, Zichu Fei, Ruijian Cai, Jun Zhao, Xingwu Hu, Zhiheng Yan, Yiding Tan,
Yuan Hu, Qiyuan Bian, Zhihua Liu, Shan Qin, Bolin Zhu, Xiaoyu Xing, Jinlan Fu, Yue
Zhang, Minlong Peng, Xiaoqing Zheng, Yaqian Zhou, Zhongyu Wei, Xipeng Qiu, and
Xuanjing Huang. 2021. TextFlint: Unified multilingual robustness evaluation toolkit
for natural language processing. In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing: System Demonstrations, pages 347–355, Online. As-
sociation for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakank-
sha Chowdhery, and Denny Zhou. 2023b. Self-consistency improves chain of
thought reasoning in language models. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), Kigali, Rwanda. Curran Associates, Inc.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. 2023c. Self-instruct: Aligning language mod-
els with self-generated instructions. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 13484–
13508, Toronto, Canada. Association for Computational Linguistics.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza
Mirzaei, Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar,
David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani
Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya
Patel, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Ro-
hitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Savan Doshi, Shail-
aja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta Patro, Tanay Dixit,
and Xudong Shen. 2022b. Super-NaturalInstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 5085–5109, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

https://doi.org/10.1162/tacl_a_00610
https://doi.org/10.1162/tacl_a_00610
https://doi.org/10.1162/tacl_a_00610
https://iclr.cc/virtual/2024/poster/19263
https://doi.org/10.18653/v1/2022.emnlp-main.479
https://doi.org/10.18653/v1/2022.emnlp-main.479
https://doi.org/10.18653/v1/2021.acl-demo.41
https://doi.org/10.18653/v1/2021.acl-demo.41
https://iclr.cc/virtual/2023/poster/11718
https://iclr.cc/virtual/2023/poster/11718
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340


VI

152 Bibliography

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström,
Said Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al.
2024. Smarter, better, faster, longer: A modern bidirectional encoder for fast,
memory efficient, and long context finetuning and inference. Computing Research
Repository, arXiv:2412.13663.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. 2019. Neural network ac-
ceptability judgments. Transactions of the Association for Computational Linguistics,
7:625–641.

Harry Weger Jr., Gina R. Castle, and Melissa C. Emmett. 2010. Active listening in peer
interviews: The influence of message paraphrasing on perceptions of listening skill.
International Journal of Listening, 24(1):34–49.

Anna Wegmann, Florian Lemmerich, and Markus Strohmaier. 2020. Detecting differ-
ent forms of semantic shift in word embeddings via paradigmatic and syntagmatic
association changes. In Proceedings of the International Semantic Web Conference
(ISWC), pages 619–635, Online. Springer International Publishing.

Anna Wegmann and Dong Nguyen. 2021. Does it capture STEL? A modular, similarity-
based linguistic style evaluation framework. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 7109–7130, Online and
Punta Cana, Dominican Republic. Association for Computational Linguistics.

Anna Wegmann, Marijn Schraagen, and Dong Nguyen. 2022. Same author or just same
topic? Towards content-independent style representations. In Proceedings of the
7th Workshop on Representation Learning for NLP, pages 249–268, Dublin, Ireland.
Association for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester,
Nan Du, Andrew M. Dai, and Quoc V. Le. 2022a. Finetuned language models are
zero-shot learners. In Proceedings of the International Conference on Learning Rep-
resentations (ICLR), Online. Curran Associates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.
Chi, Quoc V. Le, and Denny Zhou. 2022b. Chain-of-thought prompting elicits reason-
ing in large language models. In Advances in Neural Information Processing Systems
(NeurIPS), New Orleans, USA. Curran Associates, Inc.

E. Judith Weiner and William Labov. 1983. Constraints on the agentless passive. Journal
of Linguistics, 19(1):29–58.

Joseph Weizenbaum. 1966. ELIZA—a computer program for the study of natural lan-
guage communication between man and machine. Communications of the ACM,
9(1):36–45.

Lilian Weng. 2023. Prompt engineering. lilianweng.github.io.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage chal-
lenge corpus for sentence understanding through inference. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational

http://arxiv.org/abs/2412.13663
http://arxiv.org/abs/2412.13663
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1080/10904010903466311
https://doi.org/10.1080/10904010903466311
https://doi.org/10.18653/v1/2021.emnlp-main.569
https://doi.org/10.18653/v1/2021.emnlp-main.569
https://doi.org/10.18653/v1/2022.repl4nlp-1.26
https://doi.org/10.18653/v1/2022.repl4nlp-1.26
https://iclr.cc/virtual/2022/oral/6255
https://iclr.cc/virtual/2022/oral/6255
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1017/S0022226700007441
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101


Bibliography

VI

153

Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–
1122, New Orleans, USA. Association for Computational Linguistics.

Terry Winograd. 1972. Understanding natural language. Cognitive Psychology, 3(1):1–
191.

Ludwig Wittgenstein. 1953. Philosophische Untersuchungen / Philosophical Investiga-
tions. Blackwell, Oxford, UK.

Ka Wong and Praveen Paritosh. 2022. k-Rater Reliability: The correct unit of reliability
for aggregated human annotations. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 378–384,
Dublin, Ireland. Association for Computational Linguistics.

Yuwei Wu, Xuezhe Ma, and Diyi Yang. 2021. Personalized response generation via gen-
erative split memory network. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 1956–1970, Online. Association for Computational Lin-
guistics.

Sander Wubben, Antal van den Bosch, and Emiel Krahmer. 2010. Paraphrase genera-
tion as monolingual translation: Data and evaluation. In Proceedings of the 6th In-
ternational Natural Language Generation Conference, Trim, Ireland. Association for
Computational Linguistics.

Sander Wubben, Antal van den Bosch, and Emiel Krahmer. 2012. Sentence simplific-
ation by monolingual machine translation. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1015–1024, Jeju Island, Korea. Association for Computational Linguistics.

Wei Xu. 2017. From Shakespeare to Twitter: What are language styles all about? In Pro-
ceedings of the Workshop on Stylistic Variation, pages 1–9, Copenhagen, Denmark.
Association for Computational Linguistics.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. 2016.
Optimizing statistical machine translation for text simplification. Transactions of the
Association for Computational Linguistics, 4:401–415.

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and Colin Cherry. 2012. Paraphras-
ing for style. In Proceedings of COLING 2012, pages 2899–2914, Mumbai, India. The
COLING 2012 Organizing Committee.

Yang Xu and David Reitter. 2015. An evaluation and comparison of linguistic alignment
measures. In Proceedings of the 6th Workshop on Cognitive Modeling and Compu-
tational Linguistics, pages 58–67, Denver, USA. Association for Computational Lin-
guistics.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale,
Adam Roberts, and Colin Raffel. 2022. ByT5: Towards a token-free future with pre-
trained byte-to-byte models. Transactions of the Association for Computational Lin-
guistics, 10:291–306.

https://doi.org/10.1016/0010-0285(72)90002-3
https://doi.org/10.18653/v1/2022.acl-short.42
https://doi.org/10.18653/v1/2022.acl-short.42
https://doi.org/10.18653/v1/2021.naacl-main.157
https://doi.org/10.18653/v1/2021.naacl-main.157
https://aclanthology.org/W10-4223/
https://aclanthology.org/W10-4223/
https://aclanthology.org/P12-1107/
https://aclanthology.org/P12-1107/
https://doi.org/10.18653/v1/W17-4901
https://doi.org/10.1162/tacl_a_00107
https://aclanthology.org/C12-1177/
https://aclanthology.org/C12-1177/
https://doi.org/10.3115/v1/W15-1107
https://doi.org/10.3115/v1/W15-1107
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461


VI

154 Bibliography

Jinbiao Yang, Stefan L. Frank, and Antal van den Bosch. 2020. Less is better: A cognit-
ively inspired unsupervised model for language segmentation. In Proceedings of the
Workshop on the Cognitive Aspects of the Lexicon, pages 33–45, Online. Association
for Computational Linguistics.

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong, Noah Constant, Petr Pilar, Hem-
ing Ge, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Learning semantic
textual similarity from conversations. In Proceedings of the Third Workshop on Rep-
resentation Learning for NLP, pages 164–174, Melbourne, Australia. Association for
Computational Linguistics.

Xi Ye and Greg Durrett. 2022. The unreliability of explanations in few-shot prompting
for textual reasoning. In Advances in Neural Information Processing Systems (Neur-
IPS), New Orleans, USA. Curran Associates, Inc.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Wang
Yongji, and Jian-Guang Lou. 2023. Large language models meet NL2Code: A survey.
In Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7443–7464, Toronto, Canada. Association for
Computational Linguistics.

Eva Zangerle, Maximilian Mayerl, Günther Specht, Martin Potthast, and Benno Stein.
2020. Overview of the style change detection task at PAN 2020. In Working Notes
of Conference and Labs of the Evaluation Forum (CLEF), Thessaloniki, Greece. CEUR
Workshop Proceedings.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska
Roesner, and Yejin Choi. 2019. Defending against neural fake news. In Advances in
Neural Information Processing Systems (NeurIPS), Vancouver, Canada. Curran Asso-
ciates, Inc.

Rodolfo Zevallos and Nuria Bel. 2023. Hints on the data for language modeling of syn-
thetic languages with transformers. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 12508–
12522, Toronto, Canada. Association for Computational Linguistics.

Shiyue Zhang, Vishrav Chaudhary, Naman Goyal, James Cross, Guillaume Wenzek,
Mohit Bansal, and Francisco Guzman. 2022. How robust is neural machine transla-
tion to language imbalance in multilingual tokenizer training? In Proceedings of the
15th biennial conference of the Association for Machine Translation in the Americas
(Volume 1: Research Track), pages 97–116, Orlando, USA. Association for Machine
Translation in the Americas.

Xinliang Frederick Zhang and Marie-Catherine de Marneffe. 2021. Identifying inher-
ent disagreement in natural language inference. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4908–4915, Online. Association for Computa-
tional Linguistics.

https://aclanthology.org/2020.cogalex-1.4/
https://aclanthology.org/2020.cogalex-1.4/
https://doi.org/10.18653/v1/W18-3022
https://doi.org/10.18653/v1/W18-3022
https://proceedings.neurips.cc/paper_files/paper/2022/hash/c402501846f9fe03e2cac015b3f0e6b1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/c402501846f9fe03e2cac015b3f0e6b1-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.acl-long.411
https://ceur-ws.org/Vol-2696/paper_256.pdf
https://papers.nips.cc/paper_files/paper/2019/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://doi.org/10.18653/v1/2023.acl-long.699
https://doi.org/10.18653/v1/2023.acl-long.699
https://aclanthology.org/2022.amta-research.8/
https://aclanthology.org/2022.amta-research.8/
https://doi.org/10.18653/v1/2021.naacl-main.390
https://doi.org/10.18653/v1/2021.naacl-main.390


Bibliography

VI

155

Yuan Zhang, Jason Baldridge, and Luheng He. 2019. PAWS: Paraphrase adversaries
from word scrambling. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Techno-
logies, Volume 1 (Long and Short Papers), pages 1298–1308, Minneapolis, USA. Asso-
ciation for Computational Linguistics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate be-
fore use: Improving few-shot performance of language models. In Proceedings of
the 38th International Conference on Machine Learning (ICML), pages 12697–12706,
Online. Proceedings of Machine Learning Research.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. 2023. Judging LLM-as-a-judge with MT-bench and Chatbot Arena.
In Advances in Neural Information Processing Systems (NeurIPS), pages 46595–46623,
New Orleans, USA. Curran Associates, Inc.

Chao Zhou, Cheng Qiu, and Daniel E. Acuna. 2025. Paraphrase identification with deep
learning: A review of datasets and methods. IEEE Access, Early Access.

Jianing Zhou and Suma Bhat. 2021. Paraphrase generation: A survey of the state of the
art. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 5075–5086, Online and Punta Cana, Dominican Republic. Associ-
ation for Computational Linguistics.

Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng. 2021. MediaSum: A large-scale
media interview dataset for dialogue summarization. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Association for Computational Linguist-
ics: Human Language Technologies, pages 5927–5934, Online. Association for Com-
putational Linguistics.

Jian Zhu and David Jurgens. 2021. Idiosyncratic but not arbitrary: Learning idiolects
in online registers reveals distinctive yet consistent individual styles. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pages
279–297, Online and Punta Cana, Dominican Republic. Association for Computa-
tional Linguistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books. In Proceedings of the
International Conference on Computer Vision (ICCV), pages 19–27, Santiago, Chile.
Institute of Electrical and Electronics Engineers.

Caleb Ziems, William Held, Jingfeng Yang, Jwala Dhamala, Rahul Gupta, and Diyi Yang.
2023. Multi-VALUE: A framework for cross-dialectal English NLP. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 744–768, Toronto, Canada. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/N19-1131
https://doi.org/10.18653/v1/N19-1131
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1109/ACCESS.2025.3556899
https://doi.org/10.1109/ACCESS.2025.3556899
https://doi.org/10.18653/v1/2021.emnlp-main.414
https://doi.org/10.18653/v1/2021.emnlp-main.414
https://doi.org/10.18653/v1/2021.naacl-main.474
https://doi.org/10.18653/v1/2021.naacl-main.474
https://doi.org/10.18653/v1/2021.emnlp-main.25
https://doi.org/10.18653/v1/2021.emnlp-main.25
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.18653/v1/2023.acl-long.44


VI

156 Bibliography

Lal Zimman. 2019. Trans self-identification and the language of neoliberal selfhood:
Agency, power, and the limits of monologic discourse. International Journal of the
Sociology of Language, 2019(256):147–175.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Mrinmaya Sachan, and Ryan Cotter-
ell. 2023. Tokenization and the noiseless channel. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 5184–5207, Toronto, Canada. Association for Computational Linguistics.

https://doi.org/doi:10.1515/ijsl-2018-2016
https://doi.org/doi:10.1515/ijsl-2018-2016
https://doi.org/10.18653/v1/2023.acl-long.284


A
Additions to Chapter 3

Group Choice Examples of tokens

Corpus

Wikipedia ebruary _Retrieved arliament
Twitter _[joy] [loudly-crying-face][loudly-crying-face] [heart] BTS
PubMed _effec _lymphadenopathy
Misc. \t\t \r \n _differe

Pre-Tok

NO _that_ at_ in_this_case_
WS you’re that’s took develo
_WS \nI _I’m \nWhat _devices.
GPT2 _..., ensional >"; _127
LLAMA3 433 _{\n _*\n .apache

Size

500 ! $ 0 1 2 A B C is he in
4k age very _will _would
32k _surveillance _Vietnam
64k CAN 322 _infuri
128k motherboard _narcotics

Table A.1: Examples of unique tokens for each tokenizer choice. The displayed tokens are
unique to the given tokenizer in their respective group, except for the different vocabulary sizes.
The tokens of the smaller vocabulary size is always included in the bigger vocabulary size. We
represent whitespaces within tokens as _. We represent emojis within [] with their textual de-
scriptions.

A.1. Tokenizer

In this section, we provide additional information on the tokenizer settings we invest-
igate. See Table A.1 for examples of unique tokens for each setting.

A.1.1. Fitting Corpora

See an overview of the fitting dataset sizes in Table A.2. Usually, the fitting corpus for
the tokenizer and the training corpus for the language model with that tokenizer are
the same. As a result the size of the fitting corpus often varies as widely as the size
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158 A. Additions to Chapter 3

Source Train Dev Test

Wikipedia 1,469,999,792 15,000,029 15,000,087
Twitter 1,470,004,662 15,000,048 15,000,057
PubMed 1,469,999,499 15,000,106 15,000,501
Miscellaneous 1,477,872,323 15,080,505 15,080,919

Table A.2: Fitting corpora with similar word counts. We compare three fitting corpora for
tokenizers. Word count is calculated using white-space splitting. The size of the fitting corpora
are not exactly the same when it comes to word count. But variations in word count are below
1% and should not affect the vocabulary of the tokenizer fitted on them.

of training datasets. We aim for 1.5 billion tokens for all fitting corpora. The MiniPile
Kaddour (2023) dataset used for fitting in Schmidt et al. (2024) is of similar magnitude.
We further display text examples for each dataset in Table A.3. Dataset sizes vary in less
than 1% of word count. The variance in word count is an artifact of dataset creation
from several documents with lenient word count limits.

Miscellaneous Miscellaneous consists of Reddit Baumgartner et al. (2020), literature
sources (fanfictions from ao31, Gao et al., 2020’s books before 1919 from the Gutenberg
project), news articles and comments (Zellers et al., 2019’s realnews, 2020 NYTimes
articles and comments2, Kolhatkar et al., 2020’s sfu-socc), question answering (Gao
et al., 2020’s StackExchange), reviews (Hou et al., 2024’s Amazon and Wan and McAuley,
2018’s GoodReadsreviews), mails (Bevendorff et al., 2020a’s Gmane), transcripts (You-
TubeCommons3 and Gao et al., 2020’s OpenSubtitles), blogs (Schler et al., 2006’s blo-
gcorpus), raw text from webpages (Gao et al., 2020’s Common Crawl), science articles
(Lo et al., 2020’s s2orc), code and mathematics (Gao et al., 2020’s GitHub and Deep-
Mind Mathematics). See the share of different domains in Table A.4.

A.1.2. Pre-Tokenizer

See the regular expressions defining the different considered pre-tokenizers in Table
A.5. Differences affect mostly whitespace, contraction, punctuation and number
handling.

1fanfictions until 2019 from Archive of Our Own https://archiveofourown.org/, downloaded from
https://archive.org/download/AO3_story_dump_continuing in 2023, filtered for English language
using AO3 tags. Dataset was removed but should be re-creatble using tools like https://github.com/
nianeyna/ao3downloader.

2https://www.kaggle.com/datasets/benjaminawd/new-york-times-articles-comments-2020 ,
minimum length filter of 250 was applied

3https://huggingface.co/datasets/PleIAs/YouTube-Commons

https://archiveofourown.org/
https://archive.org/download/AO3_story_dump_continuing
https://github.com/nianeyna/ao3downloader
https://github.com/nianeyna/ao3downloader
https://www.kaggle.com/datasets/benjaminawd/new-york-times-articles-comments-2020
https://huggingface.co/datasets/PleIAs/YouTube-Commons
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Source Text word count domain

Wiki Mary Jane Christie Serrano (c. 1840 – 1923) was a writer, poet and con-
sidered ...

24 -

Twitter Where are the top places in Broward or Palm Beach? [thinking-
face][eyes]

10 -

PMed ... Myoelectrical activity of the gut has been studied in the postoperative
period ...

132 -

Misc.

Israel, as usual, wants American forces to fight a bloody war against
Iran. ...

66 nytimes

&gt;In Israel, my grandfather fought for its life. The people down the
street fought ...

581 reddit

Q:\n\nHow can I determine the current focused process name and ver-
sion in C#...

122 StackEx.

I read the audio version of this story and loved it. ... 53 goodreads
... always get 100 test cases (or whatever the default number of test
is)?\n\nJanek ...

134 gmane

there is Sydney waiting to enter. Their eyes meet. “Maggie! I was just ... 998 ao3
... Abstract. How many n-orthants can be intersected in the n-
dimensional ...

2048 s2orc

from torch import optim as optim\n \n from geoopt.optim.mixin im-
port ...

115 GitHub

if you’re looking for enhancement cores in the game one really useful
way ...

102 YouTube

I have a lot of ties. But my favorite one. My favorite tie is owned by ... 183 blogcorpus
Witnesses interviewed: 3 (N°1141, 1142, 1143). Nikolay S.( N°1142):
"After the ...

72 Pile-CC

It came in perfect condition and it is very soft. 9 amazon
I’m sure that the procurement people are doing the best job they can ... 94 sfu-socc
... Sort -11, -1, 0, -3, 5 in decreasing order ... 1645 DM Maths
... "But the killer isn’t the Russian army." "It’s the subzero temperat-
ures." ...

1978 OpenSubtitles

... THE\n\n LIFE\n\n OF\n\n GEORGE WASHINGTON,\n\n COM-
MANDER IN ...

2048 Gutenberg

Rumson, NJ – December 2013 What started in 2003 as a group of mostly
Christian ...

592 realnews

Table A.3: Dataset Examples. We show text examples for all used fitting corpora. We display
emojis within [] with their textual descriptions.

Genre Domain Train Dev Test

Forum Reddit 245M 2.5M 2.5M
Literature AO3 147M 1.5M 1.5M
Literature Gutenberg before 1919 49M 0.5M 0.5M
News Realnews 147M 1.5M 1.5M
News/Comments NYTimes & Comments 24M 0.3M 0.3M
News/Comments SFU-SOCC 3M 0.03M 0.02M
Q&A StackExchange 196M 2.0M 2.0M
Reviews Goodreads 49M 0.5M 0.5M
Reviews Amazon 49M 0.5M 0.5M
Mails Gmane 147M 1.5M 1.5M
Transcripts YouTubeCommons 98M 0.9M 1.0M
Transcripts OpenSubtitles 49M 0.5M 0.5M
Code GitHub 49M 0.5M 0.5M
Science S2ORC 98M 1.0M 0.9M
Blogs BlogCorpus 10M 0.1M 0.1M
Raw Text Webpages CommonCrawl 98M 1.0M 1.0M
Mathematics DM Mathematics 20M 0.2M 0.2M

Total: 1,478M 15.1M 15.1M

Table A.4: Miscellaneous Dataset Statistics
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name RegEx Example Text

NO - well..._$3000_for_a_tokenizer_isn‵t_cheapz_#lol_:)\n\nhttps://
en.wikipedia.org/wiki/Sarcasm

WS \ s+ well... _ $3000 _ for _ a _ tokenizer _ isn‵t _ cheapz _ #lol _
:)\n\nhttps://en.wikipedia.org/wiki/Sarcasm

_WS \ s + ( ? ! \ S ) | \ s+ well... _$3000 _for _a _tokenizer _isn‵t _cheapz _#lol _:) \n \nht-
tps://en.wikipedia.org/wiki/Sarcasm

GPT2

’ s | ’ t | ’ re | ’ ve | ’m| ’ l l | ’ d
| ?\p{ L } + | ?\p{N}+
| ? [^\ s \p{ L } \p{N} ] +

| \ s + ( ? ! \ S ) | \ s+

well ... _$ 3000 _for _a _tokenizer _isn ‵ t _cheapz _# lol _:) \n \n
https :// en . wikipedia . org / wiki / Sarcasm

LLAMA3

( ? i : ’ s | ’ t | ’ re | ’ ve | ’m| ’ l l | ’ d)
| [ ^ \ r \n\p{ L } \p{N} ] ? \ p{ L}+
| \ p{N} { 1 , 3 }
| ? [^\ s \p{ L } \p{N} ] + [ \ r \n] *
| \ s * [ \ r \n ] + | \ s + ( ? ! \ S ) | \ s+

well ... _$ 300 0 _for _a _tokenizer _isn ‵t _cheapz _# lol _:)\n\n
https :// en .wikipedia .org /wiki /Sarcasm

Table A.5: Investigated Pre-tokenizers. The pre-tokenizers we investigate can be described with
regular expressions. We investigate using no pre-tokenizer (NO), isolating whitespaces (WS), split
on whitespaces including single leading whitespaces in non-whitespace tokens (_WS), the pre-
tokenizer used by GPT-2 (GPT2) and the pre-tokenizer used by LLAMA 3 (LLAMA3). GPT-2 and
LLAMA 3 mainly differ in contraction, URL, whitespace and number handling. We display how
the investigated pre-tokenizer split an example text. We replace whitespaces with _ to highlight
pre-token boundaries with whitespace.
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A.2. Evaluation Tasks

A.2.1. Tasks Robust To Language Variation

GLUE task selection We originally planned to pre-train BERT models and test them
on the same GLUE tasks (Wang et al., 2018) as the ones used for the original BERT
model (Devlin et al., 2019), i.e., CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI and RTE.
We removed CoLA (Warstadt et al., 2019) as it is the task of classifying linguistic ac-
ceptability. Models have to classify morphological, syntactic and semantic “violations”
and the task can thus be expected to be sensitive to language variation. Further, we
removed STS-B (Cer et al., 2017). STS-B is a regression task for the semantic similarity
between two sentences. However, we aimed to focus on classification tasks that would
be approachable with logistic regression. After pre-training and fine-tuning on the re-
maining GLUE tasks, we also removed MRPC (Dolan and Brockett, 2005) and RTE from
the evaluated tasks. We removed RTE because the standard deviation of .04 makes the
differences in performance for models trained with only one seed unclear, the vari-
ation could be related to the small training dataset of only 2.5k instances. We further
removed MRPC as it showed almost no variation between different tokenizers — not
even for the 500 vocabulary size. Removing MRPC had the additional advantage of re-
moving another set with a small training dataset size (< 3.7k training tasks). All other
tasks had a train set size of at least 67k. Note that SST-2 was released in a parsed format
resulting in a lowercased and pre-tokenized text which might affect results.

GLUE-dialect We transform GLUE using Multi-VALUE (Ziems et al., 2023).
Multi-VALUE has strong requirements on text formatting. When Multi-VALUE per-
turbations fail we leave the GLUE text in that row as is. Depending on the task this
concerns between 3% and 18% of instances.
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Name Task Source Text 1 Text 2 label

CORE

Register
Classifica-
tion

Laippala
et al. (2023)

[...] What do you do when you
just cant seem to mix some-
thing? Hi, You have mixed
it...you just didn’t know when
to stop and move on! [...]

- Interactive
Discussion

AV

Authorship
Verification

our contri-
bution

Hi,\n\nI am currently evalu-
ating OTRS for use as a Help-
desk System.\n\nHowever I
am a little confused about
how best to set it up. [...]

Hi,\n\nI am setting up
Mailscanner not to de-
liver any spam to my
users, but to\nsend a
spam report once a day
[...]

Same Au-
thor

PAN

Author
Change

Bevendorff
et al. (2024)

I’m not gonna watch the
video. I gotta keep my san-
ity. With that being said, what
could we call for that they
haven’t done? The cops have
been fired and charged with
murder. [...]

Maybe police agencies
should be not feder-
alized but under one
agency. No more sher-
riffs no more local po-
lice. Just state police.
[...]

Author
Change

NUCLE
Error Clas-
sifications

Dahlmeier
et al. (2013)

Chernobyl accident,
happened in 1986, was a
nuclear reactor accident.

- [ArtOrDet,
Trans]

Dialect

Dialect
Classifica-
tion

transforma-
tions with
Ziems et al.
(2023)

What the best things to do in
Hong Kong one?

- CollSgE

Table A.6: Tasks Sensitive to Language Variation. For each task, we show an example.

A.2.2. Tasks Sensitive To Language Variation

See an example for each task sensitive to language variation in Table A.6.

Authorship verification Similar to the Miscellaneous corpus in Section A.1.1, the au-
thorship verification corpus consists of datasets taken from Amazon (Hou et al., 2024),
AO3, GMane (Bevendorff et al., 2020a), 2020 NYTimes articles and comments, realnews
(Zellers et al., 2019), Reddit (Baumgartner et al., 2020), StackExchange (Gao et al., 2020)
and Wikipedia articles. Additionally, the corpus includes texts from BookCorpus (Zhu
et al., 2015) and PubMed (Gao et al., 2020). It totals about 40.8k train pairs, 2.5k dev
pairs and 4.8 test pairs.

PAN The dataset was extracted from Reddit and preprocessed by removing cita-
tions, markdown, emojis, hyperlinks, multiple line breaks and extra whitespace
Bevendorff et al. (2024). Compared to the Authorship Verification task (where the
classifiers may learn to rely on content cues, apostrophe encodings, whitespace
encoding, etc., cf. Wegmann et al., 2022), this may be more difficult. The data-
set was downloaded from https://pan.webis.de/clef24/pan24-web/style-
change-detection.html.

NUCLE The dataset was downloaded from https://www.comp.nus.edu.sg/
~nlp/corpora.html.

https://pan.webis.de/clef24/pan24-web/style-change-detection.html
https://pan.webis.de/clef24/pan24-web/style-change-detection.html
https://www.comp.nus.edu.sg/~nlp/corpora.html
https://www.comp.nus.edu.sg/~nlp/corpora.html
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Text label

... Sometimes, people just don’t feel well. But if you don’t feel well more than sometimes, it may be
helpful to talk to someone about it. ...

opinion

... A transportation advocacy group is circulating a list of 100 questions aimed at broadening the
British Columbia government’s consultation on coastal ferry services. ...

narrative

... I’m sure many people have hit this brick wall. What do you do when you just cant seem to mix
something? Hi, You have mixed it...you just didn’t know when to stop and move on! ...

interactive
discussion

’Always think of home’: an introduction to the Buenos Ayres Notebook The Buenos Ayres Notebook
takes its name from the city Buenos Aires (’Good Air’ or ’Fair Winds’), ...

informational
description/-
explanation

... It would be a pleasure just to know just a little bit moreoh oh I could grow quite fond of your
acquaintance ...

lyrical

An Acadian-style cabin constructed completely of rough sawed Southern Yellow Pine, surrounded
by split rail fence. ...

informational
persuasion

... it can be easy or even enjoyable. Here is a guide on how to give an oral presentation in front of
your class. Decide on a topic ...

how-
to/instructional

... Kareem Ettouney, the art director at Media Molecule always said, Mash up, not mish mash! ——–
——– What kinds of challenges did you face with replicating LBP’s iconic 2D puppet aesthetic into
a 3D space? ...

spoken

Table A.7: Examples for Main CORE Labels. We focus on the 8 main CORE Laippala et al. (2023)
labels.

CORE We use 8 main register labels for multi-class prediction. We display an ex-
ample for all considered CORE (Laippala et al., 2023) labels in Table A.7. The original
CORE consists of main as well as sub-labels that make up a total of 56 labels in Laip-
pala et al. (2023). However using all 56 in a multi-label setup proved too difficult for
our BERT as well logistic regression models without further hyperparameter tuning.
We decided for a multi-classifcation setup, limiting ourselves to 8 out of 9 main re-
gister labels, specifically we excluded the “OTHER” catgory. This reduced the train
dataset from about 34k instances to 30k. We split up texts of length > 250 to chunks
of a maximum of 250 using whitespace splitting. Then, we perform stratified sampling
with replacement for each class to additionally upweigh small classes. Note that this
results in duplicates for the small classes up to a maximum of 10 occurrences of the
same text.
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GPU h # Params # Tokens loss steps batch size

0h 4.6M 10M 7.7 600 32
1h 42M 100M 6.5 6k 32
4h 110M 250M 6.2 15k 32
9.0 110M 750M 3.9 11k 128

11.0 110M 750M 2.7 45k 32
12.3 4.6M 330M 4.1 80k 256
13.2 110M 750M 3.2 14k 128
13.6 4.6M 3300M 4.1 75k 256
14.8 4.6M 3300M 4.1 80k 256
22.0 11.6M 3300M 3.2 75k 256

Table A.8: Hyperparameters for BERT Pre-Training. We compare the evaluation loss, and GPU
hours while varying the number of parameters, tokens, steps and batch size. For similar GPU
hours (between 11h-15h), using more pre-training tokens does not seem to improve perform-
ance as much as increasing model size. Balancing the number of model parameters and tokens,
as well as the number of steps seems crucial.

A.3. Modeling

Compute optimal BERT We originally evaluated tokenizers on tiny BERT models,
using 80k steps on a training dataset with 3.3B tokens during pre-training (second to
last row in Table A.8). This corresponds to more than three epochs on the relatively
large training dataset for a tiny BERT model with only 4.6M parameters. Using this
setup we found that tokenizers with the largest vocabulary sizes repeatedly outper-
formed all other settings. For tiny BERT, models with larger vocabulary sizes also need
to use orders of magnitude more parameters because of the larger embedding matrix.
For tiny BERT, the model size rises to 17M for a vocabulary size of 128k. Were we us-
ing a non-optimal ratio between number of tokens and parameters for our invested 15
GPU hours? We experimented with different BERT model sizes P (tiny – 4.6M, small –
11.6M, base – 110M), number of tokens T, batch sizes and number of steps. See the res-
ults in Table A.8. We evaluate performance with the eval loss on the held out set of the
pretraining corpus consisting equally of BookCorpus3 (Zhu et al., 2015) and OpenWeb-
Text2 (Gao et al., 2020). We use one tokenizer fit on the Miscellaneous corpus, using the
GPT-2 pre-tokenizer and a vocabulary size of 32k tokens. For further hyperparameter
choices, see the Hyperparameters paragraph. We make the following observations:
For similar GPU hours (between 11h-15h), using exponentially more training corpus
tokens T than parameters P for tiny BERT does not improve performance as much as
increasing model size P. This and other model results might hint at Chinchilla’s scal-
ing law, that is, optimal token count scaling with the parameter size of a model for
a fixed compute, specifically TOPT ≈ P 27/23 (Hoffmann et al., 2024), also holding for
smaller encoder models. Further, for our low resource setting, using more steps, and
thus weight updates, seems to be more important than using a large batch size. These
conclusions seems promising but very tentative. Exhaustive pretraining experiments
were out of scope for this work. Nevertheless, we think that finding compute-optimal
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Source Word Count Excerpt

Book-
Corpus

1,687,724,544 ... visit and they all swore on a second blood oath that
it wasn’t them.\n\n“What about Phantom?” Hell Girl
asked. ...

OpenWeb-
Text2

1,650,000,384 ... The future of SA-affiliated club sports, a cappella,
and Greek groups is uncertain after the All-Campus
Judicial Council ruled Friday ...

Total 3,337,724,928

Table A.9: Pretraining Corpora. Word count is calculated using white-space splitting.

settings to train small transformer models is crucial to efficiently evaluate tokenizers
going forward.

WebBook corpus Our training consists of equal parts BookCorpus34 (Zhu et al.,
2015) and OpenWebText2 (Gao et al., 2020). See the statistics in Table A.9. We randomly
sample sequences of 512 words, totaling 3.3 billion words as in the original BERT pa-
per Devlin et al. (2019). We ensure English excerpts by removing books and web text
that are not predicted as English language by using langdetect.5 We split of 2% of the
sampled data for held out dev and test sets to evaluate BERT pretraining.

Hyperparameters We keep the following pre-training settings the same as BERT
(Devlin et al., 2019): Adam with learning rate of 1e-4, β1 = 0.9, β2 = 0.999, L2 weight
decay of 0.01, learning rate warmup over the first 1% of steps, linear decay of the learn-
ing rate, dropout probability of 0.1 on all layers. However, we do not use the next sen-
tence prediction (NSP) objective and only train on masked language modeling (MLM)
with MLM probability at 15% as NSP proved to be inferior to MLM in later models (Liu
et al., 2019). Originally, pre-training was performed on a set of 3.3 billion words over 40
epochs, we experiment with different number of tokens and steps in Section 3.5. We
use the architecture of the tiny, small, medium and base BERT model (Turc et al., 2019)
which consists of 4.6, 11.6, 42, and 110 million parameters respectively.6

A.3.1. Tasks Sensitive to Language Variation

Authorship verification For the contrastive training task, we use the Supervised
Contrastive Loss7 (Khosla et al., 2020) with a siamese setup, a batch size of 128, and
a learning rate of 0.00001. We find the threshold best separating same author and dis-
tinct author pairs on the development set and report accuracy on the test set.

4https://twitter.com/theshawwn/status/1320282149329784833
5https://github.com/Mimino666/langdetect
6This might affect performances for models with especially big vocabulary sizes.
7SupConLoss as implemented in pytorch_metric_learning, see https://kevinmusgrave.github.
io/pytorch-metric-learning/losses/

https://twitter.com/theshawwn/status/1320282149329784833
https://github.com/Mimino666/langdetect
https://kevinmusgrave.github.io/pytorch-metric-learning/losses/
https://kevinmusgrave.github.io/pytorch-metric-learning/losses/
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A.4. Intrinsic Evaluation

Renyi efficiency We record some obeservations: Using no pre-tokenizer consistently
got the highest Rényi Efficency and the WS pre-tokenizer consistently got the lowest
Rényi Efficency values, even though both were never among the best performing pre-
tokenizers in the downstream tasks.

Varying vocabulary size Corpus Token Count is sensitive to the vocabulary size of the
tokenizer. A tokenizer with a vocabulary size of 128k will almost always have a lower
Corpus Token Count than a tokenizer with the vocabulary size of 32k. Independent of
how many tokens might be a better fit for a given corpus or task. Similarly, Rényi ef-
ficiency (Zouhar et al., 2023) assumes the same vocabulary size to make the efficiency
values comparable across tokenizers. Note that even when tokenizers have the same
vocabulary size, the vocabulary coverage on the downstream corpus (i.e., the actual
number of tokens that appear in the downstream corpus) might be smaller. For ex-
ample, a tokenizer that was fitted on the Twitter corpus might include vocabulary that
never appears in the original GLUE tasks. As a result Corpus Token Count and Rényi
efficiency might be skewed for tokenizers that have a very low overlap in vocabulary
with the downstream task corpus.
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A.5. Modeling Results on Diverging Pre-training and Fitting
Corpus

We experimented with diverging pre-training and fitting corpora. Specifically, we
sampled 750 million words from WebBook (cf. Section A.3) to use as an alternative
pre-training corpus. We expect WebBook to show less spelling and syntactic variation
than Miscellaneous used in the main experiment. For the fitting corpus, we compared
using PubMed, Wikipedia, Twitter and Miscellaneous. We further experimented with
the same pre-tokenizer and vocabulary size settings as in the main experiment. See
results in Table A.10, Table A.11 and Figure A.1.

For mismatched pre-training and fitting corpus, the vocabulary size needs to be higher
for tasks requiring robustness to language variation. This is intuitive as more tokens
increase the likelihood of more tokens being seen during pre-training.

Further, the pre-tokenizers NO, WS and _WS seem to have more trouble leveraging their
tokens. Possibly because they have been fitted on a corpus different from the pre-
training corpus. This is intuitive as their tokens can be expected to be especially de-
pendent on the fitting corpus. This is probably also the explanation for LLAMA3 per-
forming worse than GPT2 for tasks requiring sensitivity to language variation. GPT2
separates Unicode Character Categories the most and might thus have the largest over-
lap with the pre-training corous.

For mismatched pre-training and fitting corpus, the choice of fitting corpus seems to
more influential for tasks requiring robustness to language variation. Potentially the
lack of overlap between the fitting and the pre-training corpus change what tokens can
be leveraged effectively. Wikipedia performs surprisingly well for tasks that require
sensitivity to language variation. Wikipedia is a corpus using a very standardized ver-
sion of English. We theorize that this might help with recognizing deviations from that
norm.
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Model org -typo -dialect AVG

Corpus
PMed 81.3 69.4 79.2 76.6
Wiki 82.1 68.9 79.6 76.8
Twitter 82.4 70.4 80.5 77.8
Misc. 81.6 69.2 79.9 76.9

Pre-Tok

NO 72.3 61.6 70.9 68.3
WS 79.5 66.9 78.1 74.8
_WS 80.7 68.6 79.0 76.1
LLAMA3 82.2 69.4 79.7 77.1
GPT2 81.6 69.2 79.9 76.9

Size

500 79.6 72.8 78.1 76.8
4k 80.9 70.8 78.9 76.8
32k 81.6 69.2 79.9 76.9
64k 82.5 69.3 80.7 77.5
128k 81.9 68.5 79.9 76.7

Table A.10: Mismatched Pre-training and Fitting Corpus on Tasks Robust to Language Vari-
ation. We use the WebBook pre-training corpus and fit on the Miscellaneous, PubMed, Wikipe-
dia and Twitter corpora.

Model AV PAN CORE NUCLE DIAL Agg

Fitting
Corpus

PubMed 80.6 65.5 55.6 23.8 88.3 62.8
Wikipedia 80.9 67.2 56.8 24.8 88.7 63.7
Twitter 80.8 64.7 57.2 23.5 89.1 63.0
Misc. 82.0 68.3 57.9 24.1 89.0 64.3

Pre-
Tokenizer

NO 79.8 52.4 51.5 16.9 76.6 55.4
WS 74.9 65.2 55.7 16.6 85.3 59.5
_WS 80.4 65.2 56.8 22.1 87.9 62.5
LLAMA3 81.3 66.9 56.8 23.4 89.0 63.5
GPT2 82.0 68.3 57.9 24.1 89.0 64.3

Vocab
Size

500 77.6 62.7 53.2 15.0 86.6 59.0
4k 80.3 65.1 56.0 21.3 88.1 62.2
32k 82.0 68.3 57.9 24.1 89.0 64.3
64k 82.1 67.2 58.0 25.4 88.9 64.3
128k 82.6 66.6 54.3 24.1 89.5 63.4

Table A.11: Mismatched Pre-training and Fitting Corpus on Tasks Sensitive to Language Vari-
ation. We use the WebBook pre-training corpus and fit on the Miscellaneous, PubMed, Wiki-
pedia and Twitter corpora. We display accuracy for AV, PAN and CORE and F1 for NUCLE and
DIAL.
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Figure A.1: Pairwise Significance Testing for Tasks Robust and Sensitive to Language Variation
with Mismatched Pre-training and Fitting Corpus. We use the WebBook pre-training corpus
and fit on the Miscellaneous, PubMed, Wikipedia and Twitter corpora. We use McNemar (1947)’s
test to test how different the BERT models trained with different tokenizers classify the tasks
robust to language variation (first row) and tasks sensitive to language variation (second row).
Tokenizers are sorted by mean performance. Blue colors show statistical significance, while red
colors are above the 0.05 threshold.
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A.6. Intended Use and Licenses for used Datasets

We discuss intended use and licenses for the datasets we re-used and created for this
work.

A.6.1. Datasets curated from different sources

The Pile We include several datasets extracted from Gao et al. (2020)’s The Pile. The
Pile consists of newly collected datasets as well as datastes from other sources. There
is no license information included in the paper or original data release, but the Pile is
described as “open source language modelling data”8 and, even though not explicitly
stated, the intended use should be for open source language modelling and research.
We use the Pile to access datasets from originally other sources: books from the 1919
Gutenberg project (Rae et al., 2020)9, StackExchange10, OpenSubtitles (Tiedemann,
2016)11, Common Crawl12 and DeepMind13 (Saxton et al., 2019). We further use the
following datasets collected by the authors of the Pile: GitHub, OpenWebText2 and
PubMed14.

Reddit We use dataset originally downloaded from Pushshift (Baumgartner et al.,
2020). While the original release was public, and used in many research publications,
Reddit updated their terms and the original Pushshift releases are not publicly ac-
cessible anymore. Reddit mentions at least partial support of academic research after
agreeing to their terms of service.15

Ao3 We downloaded a public release of Archive of Our Own from https://
archive.org/download/AO3_story_dump_continuing in 2023. It did not include
license nor intended use descriptions. The dataset was removed by now but should be
re-creatable using tools like https://github.com/nianeyna/ao3downloader. Note
that the license situation remains unclear. AO3 has a complex licenses where authors
retain their rights and the website is granted a ’a world-wide, royalty-free, nonexclusive
license to make your Content available’. AO3 terms of service forbids use of fanfictions
for commercial generative AI.16

8https://pile.eleuther.ai/
9Project Gutenberg consists mostly of public US ebooks, see https://www.gutenberg.org/policy/
permission.html

10anonymized data shared with a CC-BY-sa 4.0 license, see https://archive.org/details/
stackexchange

11No licensing or intended use information included. Originally extracted from https://www.
opensubtitles.org/.

12see Terms of Use: https://commoncrawl.org/terms-of-use
13No licensing information included in the paper.
14See terms of the original dataset here: https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/README.

txt
15Developer Platform & Accessing Reddit Data
16https://archiveofourown.org/tos_faq
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A.6. Intended Use and Licenses for used Datasets

VI

171

Amazon Reviews The Amazon Reviews dataset (Hou et al., 2024) was downloaded
from https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/. While the
dataset is publicly available, the license for the data remains with Amazon but the
customers who wrote the reviews retain the copyright. There is no general site that
provides guidance on the license and constraints for this data when used in the aca-
demic or research space. The guidelines for Amazon Services are noted here https:
//www.amazon.com/gp/help/customer/display.html?nodeId=508088

GoodReads GoodReads was publicly released with Wan and McAuley (2018); Wan
et al. (2019) for academic use. We downloaded it through https://mengtingwan.
github.io/data/goodreads. The GoodReads license is available at https://www.
goodreads.com/about/terms. The license includes the text ’This license does not
include any resale or commercial use of any part of the Service, or its contents; any col-
lection and use of any book listings, descriptions, reviews or other material included in
the Service; any derivative use of any part of the Service or its contents; any download-
ing, copying, or other use of account information for the benefit of any third party; or
any use of data mining, robots, or similar data gathering and extraction tools.’

GMane Public mailing list emails collected from the gmane.io server, available at
https://webis.de/data/webis-gmane-19.html. Released with Bevendorff et al.
(2020a). Accessed through https://zenodo.org/records/3766985 after submit-
ting a request. No license stated but not publicly available without request. Terms
of use are documented on the dataset website https://zenodo.org/records/
3766985.

Blogcorpus Released with Schler et al. (2006). The paper does not discuss license
or intended use. Accessed through https://www.kaggle.com/datasets/rtatman/
blog-authorship-corpus. Schler et al. (2006) downloaded from https://www.
blogger.com/.

BookCorpus3 Originally released with Zhu et al. (2015). Bandy and Vincent (2021)
released a retrospective datasheet. Zhu et al. (2015) did not discuss intended use or
licenses. However, the license for the data can be expected to remain with the original
book copyright holders, except in cases where the copyright has expired.

NYTimes The dataset is publicly available at https://www.kaggle.com/
datasets/benjaminawd/new-york-times-articles-comments-2020 shared
with a CC BY-NC-SA 4.0 license. However, in all likelihood the license still belongs
to the NYTimes while the copyright remains with the commenter. Some details are
availble here https://help.nytimes.com/hc/en-us/articles/360039332111-The-New-
York-Times-Content-Agreement.

Realnews Published with Zellers et al. (2019). Downloaded from https://github.
com/rowanz/grover/tree/master/realnews. License can be found at this Google
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Docs Form. It is intended only for research and education use and can not be distrib-
uted.

SFU-Socc Released with Kolhatkar et al. (2020). Downloaded from https:
//github.com/sfu-discourse-lab/SOCC. Shared with Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

s2orc Released with Lo et al. (2020) mentioning research and development as in-
tended use. Downloaded through https://github.com/allenai/s2orc/?tab=
readme-ov-file. License is given as ODC-By 1.0.

YouTubeCommons Downloaded through https://huggingface.co/datasets/
PleIAs/YouTube-Commons. Released with CC-BY license. All transcripts are part of
a video shared under a CC-BY license.

GLUE Released a collection of tasks with Wang et al. (2018). Downloaded from
https://huggingface.co/datasets/nyu-mll/glue. GLUE is a common public
dataset used to evaluate language models. We use MNLI (Williams et al., 2018), SST-
2 (Socher et al., 2013), QQP and QNLI.

PAN This PAN 2024 dataset was extracted from Reddit Bevendorff et al. (2024). We
downloaded the dataset from https://zenodo.org/records/10677876. Reddit’s
terms of use might apply.

NUCLE We use the NUCLE 3.3 corpus Dahlmeier et al. (2013), downloaded from
https://www.comp.nus.edu.sg/~nlp/corpora.html after submitting a request. It
is available for for research purposes. License information can be found at https://
sterling8.d2.comp.nus.edu.sg/nucle_download/nucle.php and does not al-
low for distribution of the corpus.

CORE Released with Laippala et al. (2023), downloaded from https://github.
com/TurkuNLP/CORE-corpus. It is released with a CC BY-SA 4.0 license.

A.6.2. Datasets collected by us

Twitter Sampled in 2023 with Twitter research API access using the Decahose
sampling stream. License to distribute tweet texts was not granted. ntended use was
academic research.

A.7. Personally Identifying Information Or Offensive Con-
tent in Datasets

Some of the used datasets can be expected to include personally identifying informa-
tion or offensive content. We did not take steps to remove identifiable cues or offensive

https://docs.google.com/forms/d/1LMAUeUtHNPXO9koyAIlDpvyKsLSYlrBj3rYhC30a7Ak/viewform?edit_requested=true
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content. This was out of scope for the extensive amount of datasets used. We hope that
the effect is negligible as for all datasets, except for Twitter, datasets were already pub-
licly accessible. We acknowledge that re-distributing it might, however, make it more
widely accessible. We do not release the Twitter dataset publicly.

A.8. Model Size and Budget

We used single A100s to run modeling. We pre-trained 24 distinct BERT models for our
main experiments (taking less than 360 GPU hours), and fine-tuned each model for all
evaluation tasks (≈ 24∗ (6h ∗3 [GLUE tasks] + 3h [tasks requiring sensitivity language
variation]) = 24∗21h = 504h).

A.9. Use of AI Assistants

We used CHATGPT and GITHUB COPILOT for coding, to look up commands and
sporadically to generate individual functions. Generated functions were tested w.r.t.
expected behavior. We used AI assistants for rephrasing and grammatical error correc-
tion.





B
Additions to Chapter 4

B.1. Task Creation

We provide details on the contraction and number substitution task creation.

B.1.1. Contraction dictionary

The Wikipedia style guide discourages contraction usage and provides a dictionary
with contractions that should be avoided.1 Some of those contractions are more collo-
quial (e.g., ’twas or ain’t). We use an adapted version, removing colloquial and less
common contractions: { “aren’t”: “are not”, “can’t”: “cannot / can not”, “could’ve”:
“could have”, “couldn’t”: “could not”, “didn’t”: “did not”, “doesn’t”: “does not”, “don’t”:
“do not”, “everybody’s”: “everybody is”, “everyone’s”: “everyone is”, “hadn’t”: “had not”,
“hasn’t”: “has not”, “haven’t”: “have not”, “he’d”: “he had / he would”, “he’ll”: “he will”,
“he’s”: “he has / he is”, “here’s”: “here is”, “how’d”: “how did / how would”, “how’ll”:
“how will”, “how’s”: “how has / how is”, “I’d”: “I had / I would / I should”, “I’ll”: “I shall
/ I will”, “I’m”: “I am”, “I’ve”: “I have”, “isn’t”: “is not”, “it’d”: “it would / it had”, “it’ll”:
“it shall / it will”, “it’s”: “it has / it is”, “mightn’t”: “might not”, “mustn’t”: “must not”,
“must’ve”: “must have”, “needn’t”: “need not”, “oughtn’t”: “ought not”, “shan’t”: “shall
not”, “she’d”: “she had / she would”, “she’ll”: “she shall / she will”, “she’s”: “she has / she
is”, “should’ve”: “should have”, “shouldn’t”: “should not”, “somebody’s”: “somebody
has / somebody is”, “somebody’d”: “somebody would / somebody had”, “somebody’ll”:
“somebody will”, “someone’s”: “someone has / someone is”, “someone’d”: “someone
would / someone had”, “someone’ll”: “someone will”, “something’s”: “something has
/ something is”, “something’d”: “something would / something had”, “something’ll”:
“something will”, “that’ll”: “that will”, “that’s”: “that has / that is”, “that’d”: “that would
/ that had”, “there’d”: “there had / there would”, “there’ll”: “there shall / there will”,
“there’s”: “there has / there is”, “there’ve”: “there have”, “these’re”: “these are”, “they’d”:

1https://en.wikipedia.org/wiki/Wikipedia:List_of_English_contractions
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“they had / they would”, “they’ll”: “they shall / they will”, “they’re”: “they are”, “they’ve”:
“they have”, “wasn’t”: “was not”, “we’d”: “we had / we would / we should”, “we’ll”: “we
shall / we will”, “we’re”: “we are”, “we’ve”: “we have”, “weren’t”: “were not”, “what’s”:
“what has / what is / what does”, “when’s”: “when has / when is”, “who’d”: “who
would / who had”, “who’ll”: “who will”, “who’s”: “who has / who is”, “won’t”: “will not”,
“would’ve”: “would have”, “wouldn’t”: “would not”, “you’d”: “you had / you would”,
“you’ll”: “you shall / you will”, “you’re”: “you are”, “you’ve”: “you have”}

B.1.2. Number substitutions

We selected a pool of potential sentences where words contained character substi-
tution symbols (4,3,1,!,0,7,5) or are part of a manually selected “seed list” of number
substitution words2:
{ “2morrow”: “tomorrow”, “c00l”: “cool”, “n!ce”:“nice”, “l0ve”:“love”, “sw33t”:“sweet”,
“l00k”:“look”, “4ever”:“forever”, “l33t”:“leet”, “1337”:“leet”, “sk8r”:“skater”
“n00b”:“noob”, “d00d”:“dude”, “ph34r”:“fear”, “w00t”:“woot”, “b4”:“before”,
“gr8”:“great”, “2day”:“today”, “t3h”:“teh”, “m4d”:“mad”, “j00”:“joo”, “0wn”:“own”,
“h8”:“hate”, “w8”:“wait” }

Then, we manually removed sentences without number substitutions (e.g., common
measuring units or product numbers). Our resulting list of 100 sentences pairs con-
tains more substitution words than the above “seed list” (e.g., “d4rk”, “appreci8”,
“h1m”).

2Inspired by https://www.gamehouse.com/blog/leet-speak-cheat-sheet/, https://simple.
wikipedia.org/wiki/Leet, Ganushchak et al. (2012), https://h2g2.com/edited_entry/A787917
and manually looking at a few Reddit posts

https://www.gamehouse.com/blog/leet-speak-cheat-sheet/
https://simple.wikipedia.org/wiki/Leet
https://simple.wikipedia.org/wiki/Leet
 https://h2g2.com/edited_entry/A787917
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B.2. Similarity-based Decision

In Figure B.1, we provide a proof sketch for the Formula (4.1) in Section 4.5.2,
from

(1− sim(A1,S1))2 + (1− sim(A2,S2))2 <
(1− sim(A1,S2))2 + (1− sim(A2,S1))2

follows S1-S2.
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D(A1)D(A2) D(S1)

D(A1)

D(S2)

D(A2)
D(A)

D(S)

D(A)′

α

D(A1) > D(A2)
D(S1) > D(S2)

→|D(A) - D(S)|
< |D(A)′ - D(S)|

45◦

Figure B.1: Proof Sketch. Let D be the considered style component (e.g., formal/informal)
and D(A1), D(A2), D(S1), D(S2) be the localization of A1,A2,S1,S2 along that component. We
want to show that the inequality (4.1) holds when S1-S2 (i.e., D(A1) > D(A2) and D(S1) > D(S2)
or D(A1) < D(A2) and D(S1) < D(S2), this was also denoted as ✓ before). With a similar ap-
proach one can show that inequality (4.1) with > holds when S2-S1. As we are interested in
the cases S1-S2 and S2-S1 exactly, we can use the formula to determine orderings. W.l.o.g.,
let D(S1) > D(S2). Let us assume that for all other style and content aspects D̃ (e.g., simple/-
complex), D̃(A1) = D̃(A2) and D̃(S1) = D̃(S2) hold. We define D(A) := (

D(A1) D(A2)
)⊺

and

D(S) := (
D(S1) D(S2)

)⊺
as the style vectors of the combined anchor (A1 and A2) and alternat-

ive sentences (S1 and S2). Then, with the correct ordering being S1-S2, D(S1) > D(S2) holds iff
D(A1) > D(A2). Thus, both D(A) and D(S) point to a coordinate below the 45◦-axis when the first
component of the respective vectors corresponds to the x-axis and the second to the y-axis (see
sketch). Let D(A)′ be the reflected vector of D(A) along the 45◦-axis, i.e.,

(
D(A2) D(A1)

)⊺
. Then,

the angle between D(S) and D(A) will always be smaller than the one between D(S) and D(A)′,
because D(A) and D(S) are on the same side, and the reflection of D(A) has to be on the other
side, with the same angle towards the 45◦-axis. Then, the length of the vector D(A)−D(S) is smal-
ler than D(A)′−D(S), i.e., (D(A1)−D(S1))2+(D(A2)−D(S2))2 < (D(A2)−D(S1))2+(D(A1)−D(S2))2.
This remaining step to inequality (4.1) is replacing the distance components (i.e., (x − y)2)
with the way we compare the location of x to y on the considered style axis D as we do not
have concrete but only relative locations of x and y : cosine similarity-based distances (i.e.,
(1−sim(x, y))2). Note: As only cosine ‘angular distance’ is a distance metric, we technically would
need the angular cosine similarity to replace the squared euclidean distance in (4.1). However,
angular cosine similarity can be replaced by cosine similarity in inequality (4.1) as relative order-
ing is the same for the two similarity metrics.
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B.3. Removing Ambiguity

B.3.1. Annotation Setup

We display the task description (Figure B.2 and B.3) as well as the examples of the an-
notation task (Figure B.4 and B.5). Prolific crowd workers could participate up to
five times in annotating different created tasks from the formal/informal and simple/-
complex style dimensions. Each time a participant was asked to annotate 14 task in-
stances.

Annotator screening Per study, the annotators saw two screening questions, ran-
domly sampled from a list of 10 screening questions (see Table B.1). The screening
questions were manually created and then unanimously and correctly answered by
three lab-internal annotators in the triple setting. Crowd workers who answered any
of the screening questions incorrectly were excluded.

Annotator payment Participants were paid 10,21£/hour on average (above 8.91£ UK
minimum wage at the time of the study — April 2021 — see https://www.gov.uk/
national-minimum-wage-rates) and gave consent to the publication of their an-
notations.

Annotator requirements We required annotators to be native English speakers as we
assume them to have a better intuition about their language than non-native speakers:
During study design, we conducted a pilot study with 8 different non-native annotat-
ors. Several felt their English-speaking abilities were insufficient for the task. Further,
the pilot study projected a higher perceived and measured difficulty of the simple/-
complex dimension. As a result we required annotators to be native speakers and gen-
erated more potential simple/complex than formal/informal tasks.

https://www.gov.uk/national-minimum-wage-rates
https://www.gov.uk/national-minimum-wage-rates


VI

180 B. Additions to Chapter 4

Figure B.2: Survey Task Description for the Triple Setup. This is a screenshot of what was
shown to the crowd workers.
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Comp GT Anchor 1 (A1) Anchor 2 (A2) Sentence 1 (S1) Sentence 2 (S2)

formal/-
informal

✓ They were engaging
in intercourse.

They were having
sex.

You do not have the
perspective.

It’s cause ya got no
sense.

formal/-
informal

✗ OH, REALLY? Oh, is that so? Girlfriends is one of
my favorite shows
on television.

GIRLFRIENDS IS
ONE OF MY FA-
VORITE SHOWS.

simple/-
complex

✓ Many species had
vanished by the end
of the nineteenth
century.

Many animals had
disappeared by the
end of the 1800s.

They are culturally
akin.

Their culture is
like the other.

simple/-
complex

✓ This stamp remained
the standard let-
ter stamp for the
remainder of Vic-
toria’s reign, and
vast quantities were
printed.

This stamp stayed
the standard letter
stamp for the re-
mainder of Victoria’s
reign, and a lot of
them were printed.

Both names be-
came defunct in
2007 when they
were merged into
The National Mu-
seum of Scotland.

Both names
stopped being
used in 2007 when
they became a
part of The Na-
tional Museum of
Scotland.

numb3r
subs

✗ You are a n00b. You are a noob. This is cool. This is c00l.

numb3r
subs

✓ |-|0w n3rdy d0 y0u
1!k3 !7¿ ! d0 h4v3 4
107 0f !7 ;-)

How nerdy do you
like it? I do have a lot
of it ;-)

lol iM N0t
CH3At1ng!

lol iM Not CHeat-
ing!

Shakes-
peare

✓ Why, uncle tis a
shame.

It’s a shame, uncle. O, wilt thou leave
me so unsatisfied?

Oh, you’re gonna
leave me unsatis-
fied, right?

formal/-
informal

✗ i got limewire if i
download songs on it
will i get a ticket???

Will I get a ticket if I
download songs?

The original song is
very good.

The original song
is like too good.....

formal/-
informal

✗ I like the Click Five
and enjoy their songs.

The Click Five...they
totally rock!their
songs are out of this
world!!

i play guitar and
some piano .....yet i
cant read a note of
music....lol

I can not read mu-
sic, but I can play
guitar and piano.

formal/-
informal

✗ It reminds me of an
old song from the
Beatles.

Reminds me of an
old beatles song...
cant remember
which one tho.

KEVIN n nfnhfnig-
bubjbni.....I dunt
really watch Amer-
ican Idol..........

Kevin, I am not ex-
actly an ‘American
Idol’ viewer.

Table B.1: Screening Questions. List of manually created screening questions to ensure annot-
ator quality. Anchor 2 is only used in the quadruple setup. The task is to match anchor 1 and
anchor 2 with sentence 1 and sentence 2. The order is either as is (✓) or needs to be reversed
(✗). The correct matching is given in the GT column. The Shakespeare example was taken from
Krishna et al. (2020). The rest were either inspired or taken from Xu et al. (2016), Rao and Tetr-
eault (2018) and Baumgartner et al. (2020).
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Figure B.3: Survey Task Description for the Quadruple Setup. This is a screenshot of what was
shown to the crowd workers.
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Figure B.4: Example Survey Question for the Triple Setup. This is an example of what was
shown to the crowd workers.

Figure B.5: Example Survey Question for the Quadruple Setup. This is an example of what was
shown to the crowd workers.
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B.3.2. Annotation Results

We provide additional results in Table B.2 for the annotations performed in Section
4.4.3 in Chapter 4. Specifically, we provide examples from the sample of 601 task in-
stances that were annotated for both the quadruple and the triple setup.

For both style dimensions (301 instances respectively), the most common annotation
combinations are ✓✓and ✗✓— i.e., annotated correctly for quadruple and triple setup
and annotated correctly for quadruple, but incorrectly for the triple setup — totaling
68.1% and 88.7% for complex/simple and formal/informal respectively.

The Table shows ambiguous examples, where one could argue for both possible or-
ders. After manual inspection, this seems to be more prevalent for the simple/com-
plex dimension but it also happens for the formal/informal style dimension. E.g., for
row (formal, ✗✗), anchor 1 could be understood as more formal (e.g., ‘gentleman’) or
more informal (e.g., ‘!’ and an unusual grammatical structure). Row (formal, ✗✓) is an
example of the “Triple Problem” (cf. Section 4.4.2).
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Component Example
d T Q % GT Anchor 1 (A1) Anchor 2 (A2) Sentence 1 (S1) Sentence 2 (S2)

f ✗ ✓ 59 ≈
0.196

✓ List your best April
Fools Pranks here

Please compile
a list on here of
your best April
Fool pranks.

becuase in one of
her songs she talks
about saying no to
sex pressure from
her boyfriend

In one of her songs,
she addresses the
issue of not let-
ting her boyfriend
pressure her into
having sexual in-
tercourse.

c ✗ ✓ 94 ≈
0.312

✓ The Book of Ne-
hemiah is a book
of the Hebrew
Bible, historically
seen as a follow-
up to the Book
of Ezra, and is
sometimes called
the second book
of Ezra.

The Book of Ne-
hemiah is a book
of the Hebrew
Bible, historically
regarded as a
continuation of
the Book of Ezra,
and is sometimes
called the second
book of Ezra.

All the bats look up
to him, and he says
he caught two tiger
moths which every-
one in the colony
knows to be a diffi-
cult feat for such a
young bat

All the bats admire
him, and he claims
to have caught two
tiger moths which
are known by all the
others in the colony
to be an extraordin-
ary achievement by
such a young bat.

f ✓ ✗ 14 ≈
0.047

✗ pointsreaper is
lame he cannot
sue Yahoo for him
cheating, what a
cry baby

He is not smart.
You can not sue a
website because
you cheated.

A woman did not
perform the vocals.

A girl did not sing it.

c ✓ ✗ 42 ≈
0.14

✓ Meanwhile the
KLI has about 20
of those former
Beginners’ Gram-
marians.

Meanwhile, the
KLI has about
20 of those past
Beginner’s Gram-
marians.

N-Dubz are a MOBO
award winning hip
hop group from
London, based
around Camden
Town.

N-Dubz is a MOBO
award winning hip
hop group, based
around Camden
Town in London.

f ✗ ✗ 20 ≈
0.066

✓ Gentleman, and I
thank God every-
day for the one
that I have!

I thank God for
each day that I
have.

GIRLFRIENDS IS
ONE OF MY FAVOR-
ITE SHOWS.

Girlfriends is one of
my favorite shows
on television.

c ✗ ✗ 54 ≈
0.179

✓ Among the casual-
ties were two fish-
ers who were re-
ported missing.

Two fisher-
man are miss-
ing among the
people who may
have been hurt or
killed.

Baduhennna is
solely attested by
Tacitus’ Annals
where Tacitus re-
cords that a grove in
Frisia was dedicated
to her, and that near
this grove 900 Ro-
man prisoners were
killed in 28 CE.

In Tacitus’ Annals
by Tacitus, it is re-
corded that a grove
in Frisia was ded-
icated to Baduhen-
nna, and near to
this grove 900 Ro-
man prisoners were
killed in 28 CE.

f ✓ ✓ 208 ≈
0.691

✓ im pretty sure that
it was kiss

I am fairly certain
it was a kiss.

Law and Order...
it just has a clunk
clunk

I like Law and Or-
der, although it is a
bit clunky lately.

c ✓ ✓ 111 ≈
0.369

✓ Mifepristone is a
synthetic steroid
compound used
as a pharmaceut-
ical.

Mifepristone is a
synthetic steroid
compound which
is used as a medi-
cine.

The video was re-
leased on 7/14/06.

The video was
premiered on
MTV2 on July 14,
2006.

Table B.2: Annotation Analysis. In total 602 examples were annotated for both quadruple (Q)
and triple (T) settings with 301 per style dimension, cf. Section 4.4.3. Annotations were com-
pared to the automatically inferred ground truth (GT). For the simple/complex (c) and the form-
al/informal (f) dimensions, we give the number of occurrences of each combination of correct
(✓) and wrong (✗) annotations for T and Q. For every combination an example is given.
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all formal complex nb3r c’tion
filter full filter full filter full

BERT UNCASED 0 0 0 0 0 0 0 0
BERT CASED 0 0 0 0 0 0 0 0
ROBERTA 0 0 0 0 0 0 0 0
SBERT MPNET 0 0 0 0 0 0 0 0
SBERT PARA-MPNET 0 0 0 0 0 0 0 0
USE 0.00 0.00 0.00 0.00 0.00 0.01 0 0

BERT UNCASED NSP 0 0 0 0 0 0 0 0
BERT CASED NSP 0 0 0 0 0 0 0 0

char 3-gram 0.05 0.05 0.03 0.04 0.01 0.01 0.57 0.02
word length 0.08 0.08 0.04 0.05 0.04 0.04 0.91 0
punctuation 0.38 0.39 0.31 0.31 0.42 0.42 0.97 0.06

LIWC 0.09 0.09 0.01 0.01 0.12 0.13 0.53 0
LIWC (style) 0.62 0.64 0.37 0.38 0.80 0.79 0.94 1.0
LIWC (function) 0.28 0.28 0.14 0.14 0.38 0.38 0.81 0
deepstyle 0 0 0 0 0 0 0 0

POS Tag 0.20 0.20 0.02 0.02 0.24 0.24 0.64 1.0
share cased 0.08 0.08 0.02 0.02 0.05 0.05 0.91 0
edit dist 0.08 0.07 0.01 0.01 0.05 0.05 0.52 0.33

AVERAGE 0.11 0.11 0.05 0.05 0.13 0.13 0.38 0.15

Table B.3: Share of Random Decisions. The share of task instances for which a method can
not decide between the two options is given per component. The performance on the set of
task instances before (full) and after crowd-sourced filtering (filter) is displayed. The two highest
shares of random decisions are boldfaced. The share of random decisions is highest for the nb3r
and lowest for the formal dimension. LIWC (style) and punctuation similarity have the overall
highest share of random decisions.

B.4. Additional STEL Results

In Table B.3, we display the share of task instances where models and methods could
not decide between the two possible answers. This is adding more detail to the ‘ran-
dom’ column of Table 5.3. The share of random decisions is lower for the more complex
style dimensions (formal/informal: 0.05 and simple/complex: 0.13) and higher for the
simpler style characteristics (nb3r substitution: 0.38 and contrac’tion usage: 0.15). This
aligns with the intuition that the difference between the sentence pairs in the numb3r
substitution and contrac’tion dimension is smaller. The neural methods have a lower
share of random decisions overall.

B.5. Computing Infrastructure

The evaluation of the 18 (language) models and methods took 14 hours in total on a
machine with 32 GB RAM and 8 intel i7 CPUs using Ubuntu 20.04 LTS. No GPU was
used.
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conversation domain no
CAV AV CAV AV CAV AV

loss margin acc auc acc auc acc auc

0.4 0.63 0.63 0.68 0.68 0.71 0.71
contrastive 0.5 0.63 0.63 0.68 0.68 0.71 0.71

0.6 0.62 0.63 0.68 0.68 0.71 0.71

0.4 0.63 0.62 0.68 0.67 0.70 0.70
triple 0.5 0.64 0.64 0.68 0.68 0.70 0.70

0.6 0.63 0.63 0.67 0.67 0.70 0.70

0.4 0.58 0.58 0.64 0.64 0.67 0.67
contrastive online 0.5 0.58 0.58 0.64 0.64 0.67 0.67

0.6 0.58 0.58 0.64 0.64 0.67 0.67

Table C.1: Hyperparameter-tuning Results on the Development AV and CAV Datasets with
Varying Content Control. Results for BERT uncased trained on the contrastive authorship veri-
fication tasks (CAV). With different loss functions (contrastive, triple, contrastive online) and
margin values (0.4, 0.5, 0.6). For each development set (conversation, domain and no content
control), we display the accuracy of the models for the CAV task and the AUC for the author-
ship verification task (AV). For each development set and CAV/AV setup, the best performance
is boldfaced. Contrastive and triple loss behave comparable. The margin value only has a small
influence.

C.1. Results on the Development Set

C.1.1. Hyperparameter Tuning

Loss functions We evaluated contrastive (on the AV training setup), triple (on the
CAV training setup) and online contrastive loss (on the AV training setup) using imple-
mentations from sentence-transformers. We experiment with the loss hyperpara-
meter “margin” with values of 0.4, 0.5, 0.6 for the uncased BERT model (Devlin et al.,
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conv sub no
CAV AV CAV AV CAV AV
acc AUC acc AUC acc AUC

BERT 0.52 0.51 0.59 0.57 0.64 0.61
BERT 0.53 0.52 0.59 0.57 0.63 0.60-
ROBERTA 0.53 0.53 0.58 0.57 0.63 0.61

BERT c 0.5 0.65 0.66 0.66 0.67 0.68 0.68
BERT t 0.5 0.65 0.66 0.66 0.67 0.67 0.68

BERT c 0.5 0.66 0.67 0.67 0.68 0.69 0.70
BERT t 0.5 0.66 0.67 0.67 0.68 0.68 0.69

ROBTA c 0.5 0.69 0.70 0.70 0.71 0.70 0.72

v

ROBTA t 0.5 0.68 0.69 0.69 0.70 0.70 0.70

BERT c 0.5 0.63 0.63 0.68 0.68 0.71 0.71
BERT t 0.5 0.64 0.64 0.68 0.68 0.70 0.70

BERT t 0.5 0.65 0.65 0.68 0.68 0.71 0.71
BERT c 0.5 0.64 0.65 0.69 0.69 0.71 0.72

ROBTA c 0.5 0.67 0.68 0.71 0.72 0.73 0.74

d

ROBTA t 0.5 0.68 0.68 0.70 0.70 0.72 0.73

BERT c-0.5 0.55 0.54 0.63 0.62 0.76 0.76
BERT t-0.5 0.55 0.54 0.62 0.61 0.74 0.75

BERT c 0.5 0.57 0.56 0.64 0.63 0.76 0.77
BERT t 0.5 0.58 0.56 0.64 0.62 0.75 0.75

ROBTA c 0.5 0.59 0.58 0.65 0.64 0.77 0.78

n

ROBTA t 0.5 0.59 0.57 0.65 0.63 0.77 0.77

(a) CAV and AV Performance

conv sub no
AV AV AV

thr acc thr acc thr acc

0.82 0.51 0.70 0.55 0.69 0.58
0.86 0.51 0.85 0.55 0.85 0.58
0.96 0.52 0.97 0.55 0.97 0.58

0.72 0.61 0.73 0.62 0.73 0.63
0.27 0.61 0.27 0.62 0.29 0.63

0.24 0.62 0.28 0.63 0.26 0.64
0.72 0.62 0.73 0.63 0.73 0.64

0.72 0.64 0.72 0.64 0.73 0.65
0.30 0.63 0.31 0.64 0.32 0.64

0.73 0.59 0.73 0.63 0.73 0.65
0.16 0.60 0.19 0.63 0.19 0.64

0.20 0.61 0.27 0.63 0.23 0.65
0.74 0.60 0.74 0.64 0.72 0.66

0.72 0.63 0.72 0.65 0.72 0.67
0.22 0.63 0.24 0.65 0.19 0.66

0.76 0.53 0.77 0.58 0.74 0.69
0.14 0.53 0.37 0.57 0.24 0.68

0.40 0.54 0.35 0.59 0.23 0.69
0.74 0.54 0.76 0.59 0.74 0.69

0.80 0.56 0.77 0.60 0.74 0.71
0.38 0.55 0.34 0.59 0.19 0.66

(b) Details on the AV results

Table C.2: (Dev) Results. We display the accuracy of the models for the contrastive authorship
verification (CAV) setup and the AUC for the authorship verification (AV) setup on each dev set
(conversation, domain and no). We show results for the base models (-), and 18 fine-tuned mod-
els: BERT uncased (BERT), ROBERTA and BERT cased trained with the conversation (v), domain
(d) and no content control (n). With different loss functions (contrastive - c, triple - t) and mar-
gin values (0.4, 0.5, 0.6). For the AV task, we also display the optimal threshold according to AUC
(thr) and its matching accuracy. Generally, ROBERTA models perform the best with increasing
performance from conversation to domain to random. Accuracies for CAV are higher than for
AV. Models perform the best on the task they have been trained on. Contrastive and Triple loss
seem to behave comparable. Best performance per dev set and CAV/AV task is boldfaced.

2019) on the domain training data. Results on the development sets are displayed in
Figure C.1. Contrastive and triplet loss perform better than online contrastive loss. The
margin value only has a small influence on the performance scores. Based on these res-
ults, we decided to run all further models with the contrastive and triplet loss functions
and a margin value of 0.5.

C.1.2. Detailed Results on the Development Sets

We display the performance of the fine-tuned models on the development sets in
Table C.2. ROBERTA (Liu et al., 2019) generally performs better than the uncased and
cased BERT model (Devlin et al., 2019). Performance for the triplet and contrastive
loss functions are comparable. We only use ROBERTA models in the main paper and
both contrastive and triplet loss as a result.
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all formal complex nb3r c’tion
train data model STEL o-c STEL o-c STEL o-c STEL o-c STEL o-c

BERT 0.75 0.03 0.76 0.05 0.70 0.00 0.93 0.09 1.00 0.00
-

BERT 0.78 0.05 0.80 0.10 0.71 0.00 0.92 0.11 1.00 0.00

BERT c 0.5 0.68 0.21 0.72 0.40 0.59 0.07 0.73 0.06 1.00 0.01
BERT t 0.5 0.68 0.30 0.71 0.52 0.61 0.15 0.72 0.05 0.99 0.06
BERT c 0.5 0.73 0.32 0.83 0.62 0.60 0.19 0.67 0.06 1.00 0.00

conv.

BERT t 0.5 0.73 0.37 0.79 0.66 0.63 0.15 0.74 0.05 1.00 0.15

BERT c 0.4 0.70 0.12 0.76 0.26 0.61 0.01 0.72 0.02 1.00 0.00
BERT c 0.5 0.69 0.13 0.74 0.27 0.59 0.01 0.68 0.05 1.00 0.00
BERT c 0.6 0.70 0.13 0.76 0.26 0.61 0.01 0.72 0.04 1.00 0.00
BERT t 0.4 0.71 0.15 0.78 0.31 0.59 0.01 0.78 0.05 1.00 0.00
BERT t 0.5 0.68 0.18 0.74 0.37 0.58 0.03 0.72 0.06 1.00 0.00
BERT t 0.6 0.69 0.22 0.76 0.44 0.58 0.04 0.69 0.06 1.00 0.00
BERT c-0.5 0.73 0.23 0.82 0.48 0.61 0.02 0.77 0.03 1.00 0.00

domain

BERT t-0.5 0.71 0.28 0.81 0.56 0.57 0.06 0.80 0.04 1.00 0.00

BERT c 0.5 0.69 0.09 0.77 0.20 0.58 0.01 0.68 0.02 0.98 0.00
BERT t 0.5 0.70 0.13 0.75 0.26 0.61 0.03 0.79 0.06 1.00 0.00
BERT c-0.5 0.72 0.21 0.84 0.44 0.55 0.02 0.75 0.07 1.00 0.01

random

BERT t-0.5 0.73 0.23 0.84 0.48 0.59 0.03 0.68 0.05 1.00 0.00

Table C.3: Results on STEL and STEL-Or-Content. We display STEL accuracy for different lan-
guage models and methods. BERT stands for uncased BERT base model and BERT stands for
cased BERT base model. The performance on the set of STEL and STEL-Or-Content (o-c) task
instances is displayed. The best performance is boldfaced. Performance for the trained models
goes down for the original STEL framework in the complex/simple and nb3r substitution dimen-
sion. Performance generally increases for the STEL-Or-Content task.

C.2. Details on STEL Results

We display the STEL results on further trained models in Table C.3. Interestingly, cased
BERT seems to be the better choice for the contraction STEL dimension.
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unlearned learned

no ambiguity 5
55 ≈ 9% 12

41 ≈ 29%

typo simple 21
55 ≈ 38% 13

41 ≈ 32%
typo complex 11

55 ≈ 20% 6
41 ≈ 15%

error grammar simple 15
55 ≈ 27% 9

41 ≈ 22%
error grammar complex 5

55 ≈ 9% 3
41 ≈ 7%

changed content 5
55 ≈ 9% 3

41 ≈ 7%

word as/more complex 16
55 ≈ 29% 11

41 ≈ 27%
naturalness 7

55 ≈ 13% 3
41 ≈ 7%

Table C.4: Categories Error Analysis STEL Results. For the six fine-tuned ROBERTA models
(AV/CAVxconversation/domain/no), we manually inspected at the 55 commonly learned as well
as the 41 commonly unlearned simple/complex examples. We label the examples for the dis-
played ambiguity classes.

C.2.1. Error Analysis ROBERTA STEL results

We manually inspect the complex/simple STEL instances that were commonly learned
and unlearned by the ROBERTA models and annotate if they contain ambiguities. In
Table C.4, we display the results. Overall, the learned STEL instances contain fewer
ambiguities. However, they still show considerable amounts of ambiguities.
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n avgerage silhouette score

2 0.23
3 0.21
4 0.23
5 0.27
6 0.27
7 0.26
8 0.23
9 0.19

10 0.20
11 0.19
12 0.18
13 0.19
14 0.17
15 0.16
16 0.16
17 0.16
18 0.17
19 0.17
20 0.17
21 0.16
22 0.16
23 0.15
24 0.15
25 0.15
26 0.15
30 0.15
40 0.15
50 0.15

100 0.13
150 0.13
200 0.12

Table C.5: Silhouette Values. We experiment with different numbers of clusters for one fine-
tuned ROBERTA model (R CAV CONV 106). The highest silhouette score is reached for cluster
sizes of 5–7.

C.3. Details on Cluster Parameters

We use agglomerative clustering for the ROBERTA model trained on the CAV setup with
a margin of 0.5 and conversations as content control with seed 106 (R CAV CONV 106).
We experiment with different numbers of clusters and display the results in Table C.5.
The highest Silhouette scores are reached for cluster sizes of 5, 6, 7. We select a cluster
size of 7 for evaluation.
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C.4. Details on the Cluster Analysis

We give more examples of the seven clusters for our fine-tuned ROBERTA model in
Table C.6 and for the base ROBERTA model in Table C.7. Refer to our Github reposit-
ory for the complete clustering. We did not find obvious consistencies for clusters 1,
2 and 6. That does, however, not mean that more nuanced stylistic consistencies are
not present. We recommend using a higher number of clusters, possibly different clus-
tering algorithms and testing out statistics for known style features to pinpoint more
consistencies.

Out of all utterance pairs that have the same author, 46.2% appear in the same cluster
for the style embedding model. This is different from a random distribution among 7
clusters1 which corresponds to 20.1%± .00. As authors will have a certain variability to
their style as well (e.g., Zhu and Jurgens, 2021), a perfect clustering according to writ-
ing style would not assign all same author pairs to the same cluster. For the ROBERTA

base model the fraction of same author pairs in the same cluster is closer to the random
distribution (75.4% vs. 76.1% for the random distribution2). The fraction of utterance
pairs that appear in the same domain are close to the random distribution for both
the style embedding model (23.6% vs. 20.1%) and the ROBERTA base model (77.6%
vs. 76.0%). Results are similar for utterance pairs that appear in the same conversa-
tion.

1Calculated mean and standard deviation of 100 random assignments of utterances to the 7 clusters, with
the same number of elements in each cluster.

2The share is high for ROBERTA base because the first cluster already contains 86.7% of all utterances. Ran-
dom assignment of utterances across the 7 clusters, that keeps the clustering size would already lead to
76.1% same author pairs appearing in the same cluster (almost all of them in the first).
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C # Consistency Example 1 Example 2 Example 3

1 4065 citing pre-
vious com-
ments,
standard
punctu-
ation, URLs

Yes. Proportionally, this
kid’s feet are absolutely
enormous.

> Please delete your ac-
count.

Says the no life who
always shits on anything
Kanye or anti-Drake I can
promise you that capital-
ism is very much alive in
Norway.

[This should
help.](YOUTUBE-LINK)

2 4016 short sen-
tences?

Nice catch! Well done.
cookies are in the back of
this Grammar party. You
can have two.

You can mute them we’ve
been told!

Came here to post this
only to find it’s already the
top voted comment. This
is a good sub.

3 2165 no last
punctuation
mark

I am living in china,
they are experiencing an
enormous baby boom

Seems like sarcasm. But
could also be Poe

[...] The earth probably
has two or more degrees
of symmetry, but less than
infinite (like a sphere), but
I'm honestly not too con-
cerned about the minutiae
of it

4 1794 punctuation
/ casing

huh thats odd i'm in the
97% percentile on iq tests,
the sat, and the act

Its not a problem if you a
got a full game. Whats the
problem if a game didnt
get expansions?

Fair point, I didnt know
that. Just at glance I kind
of went 'woah that doesnt
seem right'

5 1555 ’ instead of '
apostrophe

I assume it’s the blind
lady?

Oh I wasn’t really dismiss-
ing them. I’m saying Ford
will try their own thing
compared to Fiat

It’s 4am in Brussels and I
am still hyped

6 781 similar to 1? Well, as your neighbors, I’d
say Fuck you.. But we’re
not like that, see? We
want to be part of the alli-
ance, not part of the ’fuck
you, we cant be compet-
itive with jobs or innovate
any more, so we’re going to
run massive tariffs against
all our friendly nations

Hah, thus the one calf lar-
ger than the other issue. I
have it too ;)

[So you are saying that
current encryption falls
apart as long as the
quantum computer is
large enough](URL). (for
reference, the current
highest qubit is 50)’

7 380 linebreaks I admire what you're do-
ing but [...]

I know I'm in the minority.
[...]

75% of the problems I run
into are solved by [...]

I work in live stream-
ing.

All the suggestions others
have given are excellent.
RS7 makes the most sense
to me.

But [...]

Meanwhile, [...]

Table C.6: Clusters for Fined-tuned ROBERTA Model. We display examples for each cluster of
the 7 clusters that resulted from the agglomerative clustering of 14,756 randomly sampled texts
from the conversation test set. We mention noticeable consistencies (Consistency) within the
cluster and give three examples each. Consistencies that are not as clear are marked with a ‘?’.
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C # Consistency Example 1 Example 2 Example 3

1 12798 wide variety Just googled it, looks like a
great device for the price!
If I weren’t so impatient
I would have bought this
online. Great battery life!

This is exactly why i
believe iphone 5 body
was perfect example
of good balance with
design(timeless) and
utility

[...]
The earth probably has
two or more degrees of
symmetry, but less than
infinite (like a sphere), but
I'm honestly not too con-
cerned about the minutiae
of it

2 1110 short utter-
ances

here we go!! And her good posture. Not in California.

3 310 long utter-
ances

I’ve never had the pleasure
of seeing Neil live but I got
on a big kick a few years
ago after buying one of his
live albums (can’t remem-
ber which one) where I
listened to all his live al-
bums and then wanted to
see as many of his live per-
formance I could find on
YouTube. [...]

&gt; but the movie has the
superior ending I think.

[...]

[...]

So .... heavily influenced
by the social economics ...
but still voluntary, got it.
[...]

Then how about this.
[...]
Everyone still keeps their
child that way, you even
promote child birth. No
sterilization, no stigmat-
ization of poor people, no
poor people stuck with
child with heavy needs
requiring care that they
can’t pay for.

4 232 URLs https://youtu.be/
GmULc5VANsw

[This](https://
np.reddit.com/r/
MakeupAddiction/
comments/25hkqi/
how_to_tell_if_your_
foundationprimer_is_
silicone/) might help!

I thought there was 51
stars because of Puerto
Rico

https://en.m.
wikipedia.org/wiki/
51st_state

Table C.7: Clusters for ROBERTA Base. We display examples for 4 out of 7 clusters as a result
of the agglomerative clustering of 14756 randomly sampled texts from the conversation test set.
We mention noticeable consistencies (Consistency) within the cluster and give three examples
each.

https://youtu.be/GmULc5VANsw
https://youtu.be/GmULc5VANsw
https://np.reddit.com/r/MakeupAddiction/comments/25hkqi/how_to_tell_if_your_foundationprimer_is_silicone/
https://np.reddit.com/r/MakeupAddiction/comments/25hkqi/how_to_tell_if_your_foundationprimer_is_silicone/
https://np.reddit.com/r/MakeupAddiction/comments/25hkqi/how_to_tell_if_your_foundationprimer_is_silicone/
https://np.reddit.com/r/MakeupAddiction/comments/25hkqi/how_to_tell_if_your_foundationprimer_is_silicone/
https://np.reddit.com/r/MakeupAddiction/comments/25hkqi/how_to_tell_if_your_foundationprimer_is_silicone/
https://np.reddit.com/r/MakeupAddiction/comments/25hkqi/how_to_tell_if_your_foundationprimer_is_silicone/
https://np.reddit.com/r/MakeupAddiction/comments/25hkqi/how_to_tell_if_your_foundationprimer_is_silicone/
https://en.m.wikipedia.org/wiki/51st_state
https://en.m.wikipedia.org/wiki/51st_state
https://en.m.wikipedia.org/wiki/51st_state
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C.5. Computing Infrastructure

The training of 23 ROBERTA (Liu et al., 2019), 13 uncased BERT and 6 cased BERT
models (Devlin et al., 2019) took about 846 GPU hours with one RTX6000 card with
24 GB RAM on a Linux computing cluster. Further analysis and clustering of two
ROBERTA models took about 24 GPU hours. We used a machine with 32 GB RAM and
8 intel i7 CPUs using Ubuntu 20.04 LTS without GPU access to generate the training
data.

We used sentence-transformers 2.1.0 (Reimers and Gurevych, 2019) and numpy
1.18.5 (Harris et al., 2020), scipy 1.5.2 (Virtanen et al., 2020) and scikit-learn 0.24.2
(Pedregosa et al., 2011).

We use previous work, including code and data, consistent with their specified or im-
plied intended use (Reimers and Gurevych, 2019; Chang et al., 2020; Wegmann and
Nguyen, 2021). The ConvoKit open-source Python framework invites NLP research-
ers and ‘anyone with questions about conversations’ to use it (Chang et al., 2020).
The sentence-transformers Python framework can be used to compute sentence
/ text embeddings.3 We comply with asking permission for part of the dataset for
STEL and citing the specified works (Wegmann and Nguyen, 2021). Wegmann and
Nguyen (2021) state the intended use of developing improved style(-sensitive) meas-
ures.

C.6. Intended Use

We hope our work will inform further research into style and its representations. We
invite researchers to reuse any of our provided results, code and data for this pur-
pose.

3https://sbert.net/

https://sbert.net/
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Additions to Chapter 6

D.1. Context-Dependent Paraphrases in Dialog

Should one include repetitions? Repetitions have been typically included in para-
phrase taxonomies (Bhagat and Hovy, 2013; Zhou et al., 2025) even though, e.g., Kan-
erva et al. (2023) asked annotators to exclude such pairs as they considered them unin-
teresting paraphrases. However, distinguishing repetitions from paraphrases turns out
to be especially hard in dialog: For example, speakers tend to leave words out when
they repeat and adapt the pronouns to match their perspective (e.g., I -> you). We
therefore include repetitions in our definition of context-dependent paraphrases. In
fact, those mainly make up the “Clear Contextual Equivalence” Paraphrases (see Table
6.2).

D.2. Dataset

Utterance pair IDs We use unique IDs for utterance pairs. For example, for NPR-4-2,
“NPR-4” is the ID used for interviews1 as done in Zhu et al. (2021), “2” is the position of
the start of the guest utterance in the utterance list as separated into turns by Zhu et al.
(2021), in this case “Thank you.”.

1In this case referring to https://www.npr.org/templates/story/story.php?storyId=16778438
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D.2.1. Preprocessing

We give details on the three preprocessing steps (see Section 6.4.1).

1. Filtering for 2-person interviews We filter 49,420 NPR and 414,176 CNN inter-
views from Zhu et al. (2021) for 2-person interviews only. This can be challenging: In
the speaker list, authors sometimes have non-unique identifiers (e.g., ‘STEVE PROF-
FITT’, ‘PROFFITT’ or ‘S. PROFFITT’ refer to the same speaker). If one author identifier
string is contained in the other we assume them to be the same speaker.2 We gen-
erally assume the first speaker to be the host. We remove 538 NPR and 1,917 CNN
interviews because the identifier of the second speaker includes the keywords “host”
or “anchor” — thus contradicting our assumption. This leaves 14,000 NPR and 50,301
CNN 2-person interviews.

2. Removing first and last turns of an interview The first turns in our 2-person in-
terviews are usually (reactions to) welcoming addresses and acknowledgments by host
and guest3, while the last often contain goodbyes or acknowledgments4. We remove
the first two and the last two (guest, host)-pairs. This step removes 2,409 NPR and
26,419 CNN interviews because they are fewer than 5-turns long. For the remaining
interviews, this removes 34,773 NPR and 71,646 CNN (guest, host)-pairs.

3. Removing short and long utterances We further remove short guest utterances of
1–2 words as they leave not much to paraphrase.5 3,540 NPR and 12,675 CNN pairs are
removed like this. We also remove pairs where the host utterance consists of only 1–
2 words.6. 2,940 NPR and 11,389 CNN pairs are removed like this. We also remove
pairs where guest or host utterance consist of more than 200 words.7 Overall, this
leaves 148,522 (guest, host)-pairs in 34,419 interviews for potential annotation, see
Table 6.4.

2There might be other cases where different string identifiers in the dataset refer to the same speaker al-
though they are not substrings of the other (e.g., ‘S. PROFFITT’ and ‘STEVE PROFFITT’). For a randomly
sampled selection of 44 interviews that were identified as more than 2 person interviews, 12 contained er-
rors in the matching. 2/12 were the result of typos and 10/12 were the result of additions to the name like
“(voice-over)” or “(on camera)”.

3For example, “I’m Farai Chideya.” “Welcome.” “Thank you.”
4For example the last 3 turns in the considered NPR-4 interview: “Well, Dr. Hader. Thanks for the inform-

ation.”, “Well, thank you for helping share that information [...]”, “Well, thanks again. Dr. Shannon Hader
[...]”

5We manually looked at a random sample of 0.3% ≈ 48 such pairs. The 1-2 token guest utterances are mostly
(40/48) assertions of reception by the guest (e.g., “Yes.”, “Exactly. Exactly.”, “That’s right”). Some are signals
of protest (4/48) (e.g., “Hey, man.”, “Yes, but...”, “Hold on.”). None of them were reproduced by the host in
the next turn.

6We manually looked at a random sample of 0.3% ≈ 37 such pairs. The 1–2 tokens host utterances are mostly
(28/37) assertions of reception by the host (e.g., “Yeah.”, “Yes.”, “Sure.”, “Right.”, “Right. Right.”, “Ah, okay.”).
Some are requests for elaboration (5/37) (e.g., “How so?”, “Like?”, “Four?”) or reactions (3/37) (e.g., “Wow!”,
“Oh, interesting.”). Only one example “Four?” was reproducing content in the form of a repetition.

7200 is the practical limit for the number of words for the chosen type of question (i.e., ‘Highlight” Question)
in the used survey hosting platform (i.e., Qualtrics). It also limits annotation time per question.
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D.2.2. Lead Author Annotations

The share of paraphrases in randomly sampled (guest, host)-pairs was only at around
5-15% in initial pilots with lab members. As a result, and in line with previous work
(Dolan and Brockett, 2005; Su and Yan, 2017; Dong et al., 2021; Kanerva et al., 2023),
we opted to do a pre-selection of text pairs (so called paraphrase candidates) before
proceeding with the resource-intensive paraphrase annotation (cf. Section 6.5.5). We
use annotations by the lead author to select the paraphrase candidates that are then
annotated by crowd workers (cf. Section 6.4.2). Here, we provide more details on why
we used lead author annotations for selecting paraphrase candidates, how we selected
paraphrase candidates using lead author annotations and how the lead author annota-
tions overlap with crowd-majority annotations.

Deciding to do lead author annotations for paraphrase candidates instead of using
crowdsourcing Commonly used automatic heuristics were not suitable for the highly
contextual discourse setting as these are systematically biased towards selecting more
obvious cases, e.g., text pairs that are lexically similar (cf. Section 6.4.2). We therefore
experimented with discarding obvious “non-paraphrases” via crowd-sourced annota-
tions and compared this to manual filtering by the lead author. Ultimately, we chose
the latter. One key reason was that discarding obvious “non-paraphrases” was more re-
source intensive and difficult for crowd workers than expected, making the resources
needed for discarding non-paraphrases too close to annotating paraphrases them-
selves — which defeats the purpose of doing a pre-selection in the first place.

Shifting from discarding obvious non-paraphrases to selecting paraphrases In an
initial set of 750 randomly sampled (guest, host)-pairs, the lead author discarded ob-
vious non-paraphrase pairs. The resulting set of paraphrase candidates was initially
the set we wanted crowd workers to annotate. However, this approach resulted in a
high proportion of uninteresting or improbable paraphrases among the paraphrase
candidates. To address this, we shifted our strategy from filtering out non-paraphrases
to explicitly classifying paraphrases vs. non-paraphrases. This approach includes a
higher risk of discarding paraphrases, but brings the benefit of including more actual
paraphrases in the set of paraphrase candidates. The lead author re-annotated the ini-
tial set of 750 paraphrase candidates and annotated 3700 additional (guest, host)-pairs
for paraphrases. In the first batch, the lead author also labeled a variety of different
paraphrase types/difficulties (e.g., high lexical similarity, missing context, unrelated),
see also Table D.1a. In the second batch, annotations were restricted to repetition para-
phrase, paraphrase and non-paraphrase.

Relation to the crowd-majority annotations We display the overlap between the
lead author’s paraphrase classifications and the released classifications of the crowd
majority in Table D.2. On a random set (RANDOM), the overlap is 89%.
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#

Paraphrase 88

High Lexical Similarity 59
Repetition 45

Context-Dependent
Perspective-Shift 10
Directional 17

Other Difficult Cases 16

Non-Paraphrase 519

Unrelated utterances >103
More Difficult

Topically Related >83
High Lexical Similarity >18
Partial >24
Conclusion 46

Ambiguous 18

Missing Context 125

(a) Statistics Labels First Batch.

# acc.

Paraphrase 46 0.80

High Lexical Similarity 24 0.92
Repetition 16 0.88

Context-Dependent
Perspective-Shift 10 0.90
Directional 12 0.67

Other Difficult Cases 12 0.58

Non-Paraphrase 54 0.81

Unrelated utterances 13 1.00
More Difficult 41 0.76

Topically related 24 0.67
High Lexical Similarity 11 0.64
Partial 10 0.80
Conclusion 11 0.55

(b) Statistics Labels BALANCED.

Table D.1: Overview of First Author Labels for First Batch and BALANCED. For (a), for the first
batch of 750 manually reviewed pairs, the lead author also labeled several additional categor-
ies beyond the primary paraphrase/non-paraphrase distinction. We identified 88 paraphrases,
519 non-paraphrases, 18 ambiguous cases and 125 instances missing context prevented a clear
decision. The lead author avoided labeling a pair as ambiguous if they leaned to one category
over another. Additional labels include: “perspective-shift” (the perspective shifts between guest
and host, e.g., “you” → “I”), “directional” (one utterance entails from or subsumed in the other),
“partial” (a tiny subselection could be understood as a paraphrase, but every larger selection
is clearly not a paraphrase, e.g., see Table D.3 “going to”/“to go” example), “related” (two utter-
ances are closely related but not paraphrases), “conclusion” (host draws a conclusion or adds an
interpretation that goes beyond the original meaning). Categories within Paraphrase and Non-
Paraphrase can overlap. Some of these labels were only added for the last 200 annotations and
therefore their counts are marked with “>” to indicate lower bounds. For (b), we display the label
distribution for a BALANCED subset of 100 paraphrase candidates selected for detailed annota-
tion. The sample was curated based on the assigned labels from the first batch (a). We display
overlap with lead author annotations in “acc.”.

Dataset Overlap Lead Author and Crowd Majority

BALANCED 0.72
RANDOM 0.89
PARA 0.72

Table D.2: Lead vs. Crowd Classifications. We display the average overlap between the lead
author’s classifications and the majority vote of the crowd. The overlap is the highest on the
RANDOM set. Probably because we keep all obvious non-paraphrases for classification and the
annotators face less ambiguous (guest, host)-pairs to classify.
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Figure D.1: Distribution of Labels by Lead Author. We display the estimated number of
(non-)paraphrases from the lead author annotations for the random subsample (RANDOM), the
BALANCED sample and the wider paraphrase variety sample (PARA). Note, RANDOM consists
of 100 elements, however only 98 are included in this statistic here (leading to numbers like 6.1).
2 pairs were not classified by the lead author because they were too ambiguous or were missing
context information to reach a decision. We exclude such pairs in all other samples.

D.2.3. Paraphrase Candidate Selection

Based on the lead author classifications into paraphrases, non-paraphrases and repe-
titions, we build three datasets for annotation (main paper Section 6.4.2). We display
the lead author classification distribution for the three datasets in Figure D.1.

BALANCED The BALANCED set is a sample of 100 (guest, host)-pairs that were ran-
domly sampled based on the first batch of lead author annotations (Section D.2.2) to
equally represent paraphrases and non-paraphrases. We had additional lead author
labels available for this set, see Table D.1b for the distribution of these on the BAL-
ANCED set. Constraints were 50 paraphrases and 50 non-paraphrases. In order to in-
clude more complex cases, we sampled more difficult than unrelated non paraphrase
pairs and we limited the number of repetition paraphrases (51% of paraphrases are re-
petitions in the full batch, but only 33% of paraphrases in BALANCED are repetitions).
Due to a sampling error, we ended up with a 46/56 split. Later, we calculate the major-
ity vote of the 20–21 annotations per (guest, host)-pair on this set, and then evaluate it
by comparing it against the lead author classification, see “acc.” column.

RANDOM The random set is a sample of 100 (guest, host)-pairs that was uniformly
sampled from the second batch of lead author annotations (Section D.2.2).

PARA We sampled the PARA(PHRASE) set to reach a specified total 350 paraphrases
and 150 non-paraphrases across both the RANDOM and PARA sets — thereby increas-
ing the overall number of paraphrases in the final dataset. Specifically, the PARA set
was selected to ensure that, when combined with RANDOM, there would be 300 non-
repetition paraphrases and no more than 50 repetition paraphrases. Conversely, the
number of non-paraphrases was adjusted to reach a total of 150. As a result, the PARA
set included 334 paraphrases and 66 non-paraphrases as annotated by the lead au-
thor.
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D.3. Annotations

We provide details on how the annotator training was developed (Section D.3.1) and
how annotators were ultimately trained (Section D.3.2).

D.3.1. Development of Annotator Training.

The eventual study design used in this work (see Section 6.5) is the product of iterat-
ive improvement with lab members, other volunteers and Prolific annotators. The
consecutive steps can roughly be separated into:

(1) The lead author repeatedly annotated the same set of (guest, host)-pairs with a time
difference of one week. See an example of early self-disagreement in Table D.3.

(2) With insights from (1) and our definition of context-dependent paraphrases, we cre-
ated annotator instructions. We iteratively improved instructions while testing them
with volunteers, lab members and Prolific crowd workers. See examples of disagree-
ments that led to changes in Table D.3.

(3) Based on insights from (2), we introduced an intermediate annotator training that
explains paraphrase annotation in a “hands-on” way: Annotators have to correctly an-
notate a teaching example to proceed to the next page instead of just reading an in-
struction. As soon as the correct selection is made, an explanation is shown (e.g., Fig-
ures D.4 and D.8). After further testing rounds, we also require annotators to pass two
attention checks (see Figure D.10) as well as two comprehension checks (see Figures
D.3 and D.9).

(4) We test the developed training from (3) by training annotators with it and then ask-
ing them to annotate a selection of 20 (guest, host)-pairs. We selected 10 pairs that were
classified by the lead author as clearly containing a paraphrase, and 10 as containing
no paraphrase. Half of the examples were chosen to be more challenging to classify
(e.g., paraphrase with a low lexical overlap, non-paraphrase with a high lexical over-
lap). Two lab members reached pairwise Cohen of 0.51 after receiving training. Two
newly recruited Prolific annotators reached average pairwise Cohen of 0.42 after
going through training. Due to the inherent difficulty of the task and the good annota-
tion quality when manually inspecting the 20 examples for each annotator, we carry
on with this training setup.
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Who? Example see Instructions

Self-Disa-
greement

Guest: [..] So there was a consensus organization last year that people
from genetics and ethics law got together and said, in theory, it should be
acceptable to try this in human beings. The question will be, how much
safety and evidence do we have to have from animal models before we say
it’s acceptable.
Host: When it comes to this issue, let’s face it, while there are the concerns
here in the United States, it’s happening in other countries.

(C) distinguish
paraphrases from
inferences, con-
clusions or “just”
highly related ut-
terances

Lab
Members

Guest: Hey, it’s going to be a long and a long week, and we’re going to use
every single minute of it to make sure that Americans know that Al Gore and
Joe Lieberman are fighting for working families, right here in Los Angeles
and across America.
Host: And are you guys ready to go?

(P) short
subselections of
tokens might be
“paraphrases” that
do not adequately
represent the
content of the
guest’s utterance

Guest: [...] There are militant groups out there firing against the military.
And we just - we really don’t know who is whom.
Host: Why did the army decide today to move in and clear out the camp?

Guest: Police have indicated that they have been getting cooperation from
the people involved, of course, they are looking at all of her personal
relationships to see if there were any problems there. [...]
Host: Well what have family members told you? I know you’ve talked to vari-
ous members of her family. I understand she never missed her shifts at the
restaurant where she worked. [...]

Guest: Yes, it is, all $640,000.
Host: That’s a lot of dough.

(CD) emphasize
situational aspect
to annotators, (H)
ask for token-level
accuracy of high-
lights

Prolific
Annotators

Guest: [...] He was an employee that worked downtown Cleveland and saw
it fall out of the armored car carrier, and pick it up, and took it, and placed it
in his car.
Host: And he’s been holding it ever since?

similar to (C)

Guest: [...] Would I ever thought that this would be happening, no, it is, it’s
crazy? Just enjoy the moment.
Host: [...] , Magic Johnson was saying that when he first started taking meet-
ings with investors or with business people, they didn’t take him seriously,
but he thought maybe they just wanted his autograph. [...]

(AT) use annotator
screening to throw
out annotators
more likely to pro-
duce non-sensical
pairs

Guest: [...] they say, you, you must sue “Fortnite”, and I’m like, “Fortnite”,
what is that? I don’t even know what it is –
Host: So you weren’t even familiar?

(AT) throw out
annotators that do
not select obvious
pairs

Table D.3: Examples of Disagreements in Paraphrase Annotation Pilots. All of the presen-
ted examples were highlighted by at least one annotator and selected as not showing any
paraphrases at all by at least one other annotator. We show examples from three differ-
ent conditions: Self-disagreement by the lead author, disagreements between volunteers/lab
members and disagreements between Prolific annotators. These disagreements informed
later training instructions: For (C)conclusion, see Figure D.4; for (P)artial, see Figure D.7; for
(C)ontext(D)ependent, see Figure D.8; for (H)ighlighting, see Figure D.6; for (AT)tention, we
chose a separate training setup with attention and comprehension checks, see Figures D.3, D.9
and D.10. Early on, we chose to include repetitions in our paraphrase definition since it turned
out to be conceptually difficult to separate the two — especially in a context-dependent setting
(e.g., is “You don’t know.” a repetition of “I do not know it.” or not?), see Figure D.2.
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D.3.2. Annotator Training.

We train participants to recognize paraphrases (see Figure D.2–D.10 for the exact in-
structions they received).8 We presented (guest, host)-pairs with their respective inter-
view summaries (extracted from Zhu et al. (2021)’s MediaSum corpus), the date of the
interview and the interviewer names for context.9 Participants were only admitted to
the paraphrase annotation if they passed two attention checks (see Figure D.10) and
two comprehension checks (see Figure D.3 and D.9).

Comprehension Checks Annotators are presented with a clear paraphrase pair (Ap-
pendix Figure D.3) and a less obvious context-dependent paraphrase pair (Appendix
Figure D.9) that they have to classify as a paraphrase (similar to examples in Table 6.2).
Additionally, they have to highlight the specific text spans that are a part of the para-
phrase.

Training Statistics Of the initial 347 Prolific annotators who started the training,
95 aborted the study without giving a reason10 and 126 were excluded from further
studies because they failed at least one comprehension (29%) or attention check (24%)
during training. Since annotators can perform annotations after training over a span of
several days, we further exclude single annotation sessions, where the annotator fails
any of two attention checks.

D.3.3. Annotation After Training.

Next, the trained annotators were asked to highlight paraphrases. See Figure D.11 for
an example of the annotation interface. Annotators had access to a summary of their
training at all times, see Figure D.12. We again included two attention checks. Answers
failing either attention check are removed from the dataset.

D.3.4. Annotator Payment.

Via Prolific’s internal screening system, we recruited native speakers located in the
US. Payment for a survey was only withheld if annotators failed two attention checks
within the same survey or when a comprehension check at the very beginning of the
study was failed11 in line with Prolific guidelines.12 Across all Prolific studies
performed for this work (including pilots), we paid participants a median of 8.98£/h ≈
11.41$/h13 which is above federal minimum wage in the US.14

8See it in action at https://annawegmann.github.io/Paraphrases.html
9The additional information of summary, date and speaker names increased reported understanding of con-

text and eased difficulty of the task in pilot studies among lab members.
10Usually quickly, we assume that they did not want to take part in a multi-part study or did not like the task

itself.
11Technically, in line with Prolific guidelines, we do not withhold payment but ask annotators to “return”

their study in this case. Practically this is the same, as all annotators did return such a study when asked.
12Prolific Attention and Comprehension Check Policy
13on March 20th 2024
14Federal minimum wage in the US is $7.25/h ≈ 5.71£/h according to https://www.dol.gov/agencies/

whd/minimum-wage on March 20th 2024

https://annawegmann.github.io/Paraphrases.html
https://researcher-help.prolific.co/hc/en-gb/articles/360009223553-Prolific-s-Attention-and-Comprehension-Check-Policy
https://www.dol.gov/agencies/whd/minimum-wage
https://www.dol.gov/agencies/whd/minimum-wage
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Figure D.2: Annotator Training (1). Definition Paraphrase

Figure D.3: Annotator Training (2). Comprehension Check Paraphrase. Variations of the the
shown highlighting are accepted.



VI

206 D. Additions to Chapter 6

Figure D.4: Annotator Training (3). Related but not a Paraphrase

Figure D.5: Annotator Training (4). Multiple Sentences.
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Figure D.6: Annotator Training (5). Highlighting

Figure D.7: Annotator Training (6). Partial vs actual paraphrase
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Figure D.8: Annotator Training (7). Using context information

Figure D.9: Annotator Training (8). Example of an accepted answer for the comprehension
check at the end. Only annotators who highlighted similar spans are admitted to annotate un-
seen instances. Some of the admitted annotators additionally selected the pair “he’s improved a
lot” and “he’s expected to make a full recovery”.
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Figure D.10: Annotator Training (9). Two attention checks shown at different times during
training.
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Figure D.11: Interface for Highlighting Categories. Annotators are asked to highlight the cat-
egories on word level.

Figure D.12: Overview Table Shown to Annotators
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(a) Accuracy w.r.t. 20 annotators (b) kRR

Figure D.13: Annotator Recruitment Strategies. To decide the number of annotators for a spe-
cific item, we test three different strategies: (1) using a fixed number of annotators across all
items (ALL), (2) increasing the number of annotators until at least n annotators agree for each
item (absolute) and (3) increasing the number of annotators from 3 until the entropy is smaller
than a given threshold (entropy) or a maximum of 10, 15 or 20 annotators is reached. We display
the accuracy of the methods compared to using all 20 annotations in (D.13a) and the reliability
measure kRR depending on the average number of annotators used (Wong and Paritosh, 2022)
in (D.13b). We set a maximum average cost of 8 annotators per item and require a minimum
accuracy of 90% as well as a minimum kRR of 0.70. When a strategy fulfills these requirements
(i.e., falls in the upper left quadrants for (a) and (b)), we display the entropy thresholds for (3)
and absolute number of annotators for (2).

D.3.5. Annotator Allocation Strategy

To the best of our knowledge, what constitutes a “good” number of annotators per item
has not been investigated for paraphrase classification.

Summary Using the 20–21 annotations per item collected for the BALANCED set, we
simulate both fixed and dynamic strategies to recruit up to 20 annotators per item. We
evaluate the different strategies based on their agreement with the majority vote de-
rived from all 20–21 annotators. When considering resource cost and performance
trade-offs, dynamic recruitment strategies performed better than allocating a fixed
number of annotators for each item.

Details We consider three different strategies for allocating annotators to an item:
(1) using a fixed number for all items, (2) for each item, dynamically allocate annotat-
ors until n of them agree and (3) similar to Engelson and Dagan (1996), for each item,
dynamically allocate annotators until the entropy is below a given threshold t or a max-
imum number of annotators has been allocated. We simulate each of these strategies
using the annotations on BALANCED. We evaluate the strategies on (a) cost, i.e., the av-
erage number of annotators per item and (b) performance via (i) the overlap between
the full 20 annotator majority vote (i.e., we assume this is the best possible result) and
the predicted majority vote for the considered strategy and (ii) k-rater-reliability (Wong
and Paritosh, 2022) — a measure to compare the agreement between aggregated votes.
Note, for the dynamic setup we need to change the original calculation of kRR (Wong
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and Paritosh, 2022) by aggregating the votes of a varying instead of a fixed number of
annotators.

Results See Figure D.13 for the results. We selected a practical resource limit of an
average 8 annotators per items and the requirement of at least 90% overlap with the
majority vote and 0.7 kRR (dotted lines). We decide on strategy (3) dynamically re-
cruiting annotators (minimally 3, maximally 15) until entropy is below 0.8. Also with
other min/max parameters this was a good trade-off between accuracy, kRR and av-
erage number of annotators. The average number of annotators needed per item is
then about 6.8. In this way, most items receive annotations from 3 annotators, while
difficult ones receive up to 15.

D.3.6. Anonymization

We replace all Prolific annotator IDs with non-identifiable IDs. We only make the
non-identifiable IDs public.
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(a) Duration (b) Quality Checks Passed

Figure D.14: On BALANCED, later training sessions take longer and pass fewer quality checks.
In D.14a, we display the time (in seconds) the nth annotator needs to go through the training
session. The annotators are ordered according to the dates they completed the training. An-
notations were distributed across 6 different days in June 2023. The green line represents the
median duration time of the first n participants. The red line displays the initially estimated
completion time of 900 seconds according to pilot studies. The blue line is a linear regression
estimate of the duration and it’s 95% confidence interval. On average, participants participating
on a later date need more time to finish. In D.14b, we display the summed number of the first
n participants that passed the quality checks during training. The grey line represents the angle
bisector, i.e., if every participant would pass all quality checks. Later participants are less likely
to pass the quality checks.

D.3.7. Varying Annotator Behavior over Time.

For the BALANCED set, we performed several rounds of training and annotation.
Figure D.14 shows the completion times and share of passed quality checks among
Prolific annotators during the training session. Notably, participants that were re-
cruited later performed worse: They passed fewer quality checks and took more time.
While this effect was clear, it is not quite clear to us why this happened. To mitig-
ate potential issues with the age of the study, we recruited all participants at once in
subsequent studies and not iteratively as for the BALANCED set. Overall, the time of
recruitment should have minimal impact on the quality of the final annotations, as we
always excluded any annotators who failed our quality checks.

D.3.8. Intra-Annotator Annotations Quality

We randomly sample ten annotators (with anonymized Prolific ids 60, 6, 86, 84, 47,
31, 68, 88, 41, 92) and manually analyze 42 of their annotations. Nine annotators con-
sistently provide plausible annotations, while the other annotator chooses “not a para-
phrase” a few times too often. We also noticed some other annotator-specific tenden-
cies, for example, one annotator might tend to highlight fewer words, more words or
prefer exact lexical matches.
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Learning Rate Epoch F1 on development set (↑)

1e-3 8 0.61 ± 0.04
3e-3 8 0.64 ± 0.06
5e-3 8 0.52 ± 0.15

3e-3 4 0.65 ± 0.07
3e-3 12 0.65 ± 0.00
3e-3 16 0.60 ± 0.10

Table D.4: Hyperparameter Tuning. We train token classifiers with learning rates of 1e-3, 3e-3,
and 5e-3, and epochs of 4, 8, 12, and 16. When varying one, we fix the other (3e-3 for learning
rate, 8 for epochs). Results show mean and standard deviation over three seeds. The best learn-
ing rate and epoch are underlined, the best F1 score is boldfaced.

D.4. Modeling

D.4.1. In-Context Learning

Hugging Face URLs VICUNA 7B: https://huggingface.co/lmsys/vicuna-7b-
v1.5, MISTRAL 7B Instruct: https://huggingface.co/mistralai/Mistral-
7B-Instruct-v0.2, OPENCHAT: https://huggingface.co/openchat/openchat-
3.5-0106, GEMMA 7B: https://huggingface.co/google/gemma-7b-it, MIX-
TRAL 8X7B INSTRUCT: https://huggingface.co/mistralai/Mixtral-8x7B-
Instruct-v0.1, LLAMA 7B: https://huggingface.co/meta-llama/Llama-2-
7b-hf and LLAMA 70B: https://huggingface.co/meta-llama/Llama-2-70b-
hf.

Prompt We use a few-shot prompt closely aligned with the original annotator train-
ing and instructions, see Figure D.15. We use chain-of-thought, i.e., starting with “Let’s
think step by step.” and ending with “Therefore, the answer is” (Kojima et al., 2022).
The few-shot prompt includes all eight examples shown to human annotators (Fig-
ures D.2–D.10). For GPT-4, we use a temperature of 1, use self-consistency through
prompting the model 3 times (Wang et al., 2023b), and use the default top_p nucleus
sampling value of 1. The maximum number of new tokens is set to 512. For all Hugging
Face models, we also use a temperature of 1, apply self-consistency through prompting
the model 10 times (only 3 times for LLAMA 70B due to resource limits) and use top_k
sampling of the top 10 tokens. The maximum number of new tokens is set to 400.
Note, there are many more prompts and choices we could have tried that are out-of-
the scope of this work. Further steps could have included separating the classification
and highlighting task, experimenting with other phrasings and so on.

D.4.2. Token Classification

We use settings closely aligned with Wang et al. (2022a), and experimetn with different
learning rates and number of epochs. For the results, see Figure D.4. We use a learning

https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/openchat/openchat-3.5-0106
https://huggingface.co/openchat/openchat-3.5-0106
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-70b-hf
https://huggingface.co/meta-llama/Llama-2-70b-hf
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rate of 3e-3 and 12 epochs for further modeling. We use the model checkpoints that
performed best on the development set.
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A Paraphrase i s a rewording or r e p e t i t i o n of content in the guest ’ s statement . I t rephrases what the guest said .
Given an interview on − with the summary : Fresh Prince Star Alfonso Ribeiro Sues Over Dance Moves ; Rapper 2 Milly Al leges His

Dance Moves were Copied .
Guest and Host say the following :
Guest (TERRENCE FERGUSON, RAPPER) : I guess i t was season 5 when they premiered i t in the game . A bunch of DMs, a bunch of

Twitter requests , e−mails , everything was l i k e , you , your game i s in the dance , you need to sue , " Fortnite " s t o l e i t .
Even l i k e big a r t i s t s , major a r t i s t s l i k e Joe Buttons and s t u f f , they have t h e i r own l i k e show , dai ly struggle , they
say , you , you must sue " Fortnite " , and I ’m l i k e , " Fortnite " , what i s that ? I don ’ t even know what i t i s −−

Host (QUEST) : So you weren ’ t even f a m i l i a r ?
In the reply , does the host paraphrase something s p e c i f i c the guest says ?

Explanation : Let ’ s think step by step .
Terrence Ferguson says at the end of his turn that he didn ’ t know Fortnite .
Quest , the host of the interview , repeats that the guest doesn ’ t know Fortnite .
So they both say that the guest didn ’ t know Fortnite . Therefore , the answer i s yes , the host i s paraphrasing the guest .
Verbatim Quote Guest : " I ’m l i k e , " Fortnite " , what i s that ? I don ’ t even know what i t i s "
Verbatim Quote Host : "you weren ’ t even f a m i l i a r ?"
C l a s s i f i c a t i o n : Yes .

Given an interview on 2013−10−1 with the summary : . . .
Guest and Host say the following :
Guest (REP . RAUL LABRADOR (R) , IDAHO) : . . .
Host (BLITZER) : . . .
In the reply , does the host paraphrase something s p e c i f i c the guest says ?

Explanation : Let ’ s think step by step . EXPLANATION Therefore , the answer i s yes , host i s paraphrasing the guest .
Verbatim Quote Guest : "We would l i k e the senators to a c t u a l l y come and negotiate with us . "
Verbatim Quote Host : "you want to negotiate "
C l a s s i f i c a t i o n : Yes .

ITEM

Explanation : . . .
Verbatim Quote Guest : None .
Verbatim Quote Host : None .
C l a s s i f i c a t i o n : No.

ITEM

Explanation : . . .
Verbatim Quote Guest : "She" " Talked about family l i f e . " " errands they need to run and things l i k e that . "
Verbatim Quote Host : "she talked " "about her family and her kids . " "how they ’ re l i v i n g day by day . "
C l a s s i f i c a t i o n : Yes .

ITEM

Explanation : . . .
Verbatim Quote Guest : None .
Verbatim Quote Host : None .
C l a s s i f i c a t i o n : No.

ITEM

Explanation : . . .
Verbatim Quote Guest : None .
Verbatim Quote Host : None .
C l a s s i f i c a t i o n : No.

ITEM

Explanation : . . .
Verbatim Quote Guest : " shipping him here to me"
Verbatim Quote Host : "coming to New Jersey and being under the auspices " " of De Lacy Davis . "
C l a s s i f i c a t i o n : Yes .

ITEM

Explanation : . . .
Verbatim Quote Guest : " I ’m to see him . "
Verbatim Quote Host : "him" "have a v i s i t from you"
C l a s s i f i c a t i o n : Yes .

Given an interview on DATE with the summary : SUMMARY
Guest and Host say the following :
Guest (NAME) : UTTERANCE
Host (NAME) : UTTERANCE
Explanation : Let ’ s think step by step .

Figure D.15: Prompt Template Close to Annotator Instructions. The used prompt template is
based closely on our annotator training and instructions. Phrasings were adapted to match the
prompt-setting but kept the same where possible. See the full prompt in our Github Repository.
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D.4.3. Highlighting Analysis

We compare the highlights provided by DEBERTA AGGREGATED15 and DEBERTA

ALL16 on 10 text pairs from the test set that were classified as paraphrases by both
models. We provide examples in Table D.5. DEBERTA ALL highlights are shorter, of-
ten more on point and arguably more consistent than DEBERTA AGGREGATED high-
lights. We also manually analyzed 10 text pairs from the test set that GPT-4 classified
as paraphrases. We provide examples of GPT-4 highlights in Table D.6. Generally, they
seem of good quality, but have the tendency to span complete sub-sentences, even if
not all is relevant.

Hallucinations One of the biggest problems for in-context learning are the extrac-
tions of the highlighting from the model responses which has errors in up to 71% of the
cases in Table 6.9. Most of these errors can be split into two categories: (1) inconsist-
ent highlighting, where the model classifies a paraphrase but does not highlight text
spans in both the guest and host utterance and (2) hallucinations, where the model
highlights spans that do not exist in the guest or host utterance. Hallucination is more
prevalent than inconsistent highlighting for GPT-4, where in most cases it leaves out
words (e.g., “coming back to a normal winter” vs. “coming back daryn to a normal
winter”), in some other cases it adds or replaces words (e.g.,“he’s a counterpuncher”
vs. “he’s counterpuncher”), uses morphological variation (e.g., “you’ve” vs. “you have”)
or quotes from the wrong source (e.g., from the host when considering the guest utter-
ance). Most of these extraction errors appear to be resolvable by humans when look-
ing at them manually, so it might be possible to address them in future work with a
more advanced matching algorithm or by querying GPT-4 until one gets a parsable
response. Notably, many GPT-4 classifications seem plausible, even when marked as
incorrect by the crowd majority.

D.4.4. Computing Infrastructure

The fine-tuning of 18 DEBERTA token classifier, and running inference on 7 generative
models took approximately 260 GPU hours on one single A100 card with 80GB RAM
on a Linux computing cluster. We use scikit-learn 1.2.2 (Pedregosa et al., 2011),
statsmodels 0.14.1 (Seabold and Perktold, 2010) and krippendorff17 0.6.1 for eval-
uation.

D.5. Use of AI Assistants

We used CHATGPT and GITHUB COPILOT for coding, specifically to look up commands
and sporadically to generate functions. Generated functions are marked in our code.

15i.e., trained on the aggregated set of annotations with seed 202 with F1 score of 0.76, precision of 0.72 and
recall of 0.84, see https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog

16i.e., trained on all annotations with seed 201 with F1 score of 0.72, precision of 0.84 and recall of 0.63, see
https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog-ALL

17https://github.com/pln-fing-udelar/fast-krippendorff

https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog
https://huggingface.co/AnnaWegmann/Highlight-Paraphrases-in-Dialog-ALL
https://github.com/pln-fing-udelar/fast-krippendorff
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AGG ALL C Shortened Examples

✓ ✓ ✗

G: There are people that are in that age range where we know they’re high
risk, why are they going to the supermarket to buy their own groceries? Get the

community, the neighborhood to go and help them.

H: if you’re going to help somebody by helping them maybe get their groceries,
how long does the coronavirus live on surfaces?

✓ ✓ ✓

G: And people always prefer, of course, to see the pope as the principal celebrant
of the mass. So that’s good. That’ll be tonight. And it will be his 26th mass and it will
be the 40th or, rather, the 30th time that this is offered in round the world transmis-
sion. And it will be my 20th time in doing it as a television commentator from
Rome so.
H: Yes, you’ve been doing this for a while now.

✓ ✓ ✓

G: Well, what happened was we finally waved down a Coast Guard helicopter.
And what they were looking for were people with disabilities and medical con-
ditions, which none of us really had. They didn’t lift any of us into the helicopter
or anything. What they told us was to basically walk out of our house, up the

street, trying to fight against the current that was going the opposite way of
where we needed to go.
H: So you walked through that current to get to the higher ground or get to a
drier spot?

✓ ✗ ✗

G: They’ve now spent $6 million on this Benghazi investigation. They keep
coming up with more and more interviews.
H: On Benghazi, Trey Gowdy now says your committee has interviewed 75 witnesses.

Table D.5: DEBERTA ALL vs. DEBERTA AGGREGATED Highlights. Paraphrase high-
lights predicted by the best DEBERTA ALL (boldfaced) and the best DEBERTA AGG model
(underlined). Even though DEBERTA AGG gets better F1 scores on classification, the DEBERTA

ALL highlights are arguably more on point. For comparison, we also display the human high-
lights if they exist. Note, highlights can exist even if the crowd-majority vote (C) did not predict
a paraphrase.

Generated functions were tested w.r.t. expected behavior. We did not use AI assistants
for writing.
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GPT-4 C Shortened Examples

✓ ✗

G: We also want to see what connections exist between pardons and potential gifts to
the Clinton Library.
H: Congressman, short of, though, having a thank-you note attached to a check that
went to the Clinton Library, what is it exactly that is going to prove that there was a quid
pro quo, that these pardons were actually bought?

✓ ✗

G: They’ve now spent $6 million on this Benghazi investigation.
They keep coming up with more and more interviews.

H: On Benghazi, Trey Gowdy now says your committee has interviewed 75 witnesses.

✓ ✓

G: [Trump] is appointing very young judges.

H: [...] if you’re 50-plus, you’re probably too old for the Trump Administration to be

seriously considered for a district court judgeship.

Table D.6: GPT-4 Highlights. Paraphrase highlights predicted by GPT-4. For comparison, we
also display the human highlights if they exist. Note, highlights can exist even if the crowd-
majority vote (C) did not predict a paraphrase.
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Nederlandse Samenvatting

In taal is variatie alomtegenwoordig. Mensen gebruiken veel verschillende uitdrukkin-
gen om hetzelfde te zeggen. Echter, NLP-modellen hebben de neiging te kort te schie-
ten in de omgang met taalvariatie. Dit kan van invloed zijn op taken waarbij het model
robuust moet zijn voor taalvariatie (bij semantische taken, zoals zoeken naar relevante
documenten voor een zoekopdracht, is het bijvoorbeeld niet van belang of een tekst
Britse of Amerikaanse spelling gebruikt) en taken waarbij het model gevoelig moet zijn
voor taalvariatie (op vorm gebaseerde taken, zoals verificatie van auteurschap, maken
bijvoorbeeld onderscheid tussen Britse en Amerikaanse spelling). In dit proefschrift
ontwikkel ik methoden die taalmodellen gevoeliger en robuuster maken voor taalvari-
aties.

In hoofdstuk 3 onderzoek ik tokenizers — een fundamenteel onderdeel van taalmo-
dellen — op hun gevoeligheid en robuustheid voor taalvariaties. Daarbij laat ik zien
dat het belangrijk is om in alle fasen van de ontwikkeling van taalmodellen rekening
te houden met taalvariaties. In hoofdstuk 4 en 5 ontwikkel ik vectorrepresentaties die
gevoelig zijn voor één aspect van taalvariatie: de taalstijl van een tekst. In hoofdstuk
4 identificeer ik een gebrek aan evaluatiebenaderingen van NLP-methoden in termen
van hun gevoeligheid voor linguïstische stijl. Ik presenteer het STyle EvaLuation Fra-
mework (STEL), waarmee NLP-methoden voor het eerst systematisch kunnen worden
beoordeeld op hoe gevoelig ze reageren op stilistische variaties in teksten. In hoofd-
stuk 5 train ik neurale tekstrepresentaties die – in tegenstelling tot eerdere benaderin-
gen – de taalstijl onafhankelijk van de inhoud vastleggen en goede resultaten behalen
op STEL. De resulterende vectorrepresentaties zijn al op verschillende manieren toege-
past in de NLP-gemeenschap. In hoofdstuk 6 behandel ik de herkenning van parafrases
tussen sprekers in dialogen. Hiervoor train ik crowdworkers in mijn eigen ontwikkelde
iteratieve procedure om parafrases te classificeren. Mijn resultaten tonen aan dat zo-
wel mensen als NLP-modellen aanzienlijke moeite hebben om taalkundig variërende,
maar inhoudelijk identieke uitspraken op een robuuste manier te herkennen.

Ik hoop dat dit proefschrift de NLP-gemeenschap ook zal aanmoedigen om taalvariatie
sterker te integreren in de ontwikkeling van NLP-methoden.
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Deutsche Zusammenfassung

“Ik ben een Utrechter” und “Ik ben een Utrechtenaar” — obwohl sich diese beiden Äu-
ßerungen oberflächlich voneinander unterscheiden, übersetzt das Übersetzungstool
DEEPL beide Sätze mit “Ich komme aus Utrecht”. Diese Übersetzung ist völlig ange-
messen, da sowohl “Utrechter” als auch “Utrechtenaar” einen Einwohner der Stadt
Utrecht bezeichnen. Man kann sagen, dass DEEPL in diesem Fall robust gegenüber
Sprachvariationen ist: Es behandelt beide Äußerungen gleich. Es gibt aber auch vie-
le Situationen, in denen es hilfreich sein kann, wenn NLP-Modelle sensibel gegenüber
Sprachvariationen sind. Historisch war “Utrechtenaar” der üblichere Begriff. Er wurde
jedoch heute im allgemeinen Sprachgebrauch weitgehend durch “Utrechter” ersetzt,
da “Utrechtenaar” seit den Utrechter Sodomieprozessen (ca. 1730) mit schwulen Män-
nern assoziiert wird. Wenn sich heute jemand als “Utrechtenaar” statt “Utrechter” be-
zeichnet, wissen wir möglicherweise mehr über diese Person — etwa, dass sie eher Teil
der lokalen queeren Community ist. Stellen wir uns einen Zeitungsartikel vor, in dem
sich zwei Personen als “Utrechter” bzw. “Utrechtenaar” bezeichnen: Die Übersetzung
beider Begriffe mit “Einwohner von Utrecht” könnte subtile Unterschiede in Bezug auf
Hintergrund und soziale Identität verschleiern — was möglicherweise zu Verwirrung
oder zum Verlust narrativer Nuancen führt.

In dieser Dissertation entwickle ich Methoden, die Sprachmodelle sensibler und ro-
buster gegenüber Sprachvariationen machen. In Kapitel 3 untersuche ich Tokenizer —
ein Grundbaustein von Sprachmodellen — hinsichtlich ihrer Sensibilität und Robust-
heit gegenüber Sprachvariationen. Dabei zeige ich, dass es wichtig ist, Sprachvariatio-
nen in allen Phasen der Entwicklung von Sprachmodellen zu berücksichtigen. In den
Kapiteln 4 und 5 entwickle ich Vektordarstellungen, die für einen Aspekt von Sprachva-
riation sensibel sind: den Sprachstil eines Textes. In Kapitel 4 schlage ich das STyle Eva-
Luation Framework (STEL) vor, mit dem sich NLP-Methoden zum ersten Mal systema-
tisch daraufhin bewerten lassen, wie sensibel sie auf stilistische Variationen in Texten
reagieren. In Kapitel 5 trainiere ich neuronale Textrepräsentationen, die — im Gegen-
satz zu vorherigen Ansätzen — den Sprachstil unabhängig vom Inhalt erfassen und
auf STEL gute Ergebnisse erziehlen. Die daraus resultierenden Vektordarstellungen
haben in der NLP-Community bereits vielfältige Anwendung gefunden. In Kapitel 6
befasse ich mich mit der Erkennung sprecherübergreifender Paraphrasen in Dialogen.
Dazu trainiere ich Crowdworker in meinem eigens entwickelten iterativen Verfahren,
Paraphrasen zu klassifizieren. Auf dieser Basis erstelle ich einen Datensatz, der von
bis zu 21 Personen annotiert wurde. Meine Ergebnisse zeigen, dass sowohl Menschen
als auch NLP-Modelle erhebliche Schwierigkeiten haben, sprachlich variierende, aber
inhaltlich gleiche Äußerungen robust zu erkennen.

Ich hoffe, dass diese Arbeit die NLP-Community dazu anregt, Sprachvariationen stär-
ker in die Entwicklung von NLP-Methoden einzubeziehen.
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