Paradigmatic

VS.

Syntagmatic

...

The refugee is a person. The refugee fled her home. The migrant cannot return safely.

A migrant is a person. The displaced person fled his home. The displaced person cannot return.

...

The refugee is a person.
The refugee fled her home.
The migrant cannot return safely.

...

A migrant is a person. The displaced person fled his home. The displaced person cannot return.

•••

Evaluating Language Change Detection

Detecting Different Forms of Semantic Shift in Word Embeddings via Paradigmatic and Syntagmatic Association Changes

Anna Wegmann, Florian Lemmerich, Markus Strohmaier

RWTH Aachen University & Utrecht University

November 2020, International Semantic Web Conference 2020

Word Embeddings change

Figure from [W.L. Hamilton et al., Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change, 2016]

Word Embeddings change

Figure from [W.L. Hamilton et al., Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change, 2016]

Semantic Shift Problem:

Given word w and texts $T_1,...,T_k$ in time-sensitive order \Rightarrow (How) did w shift "in meaning" over time?

Semantic Shift Problem

Figure from [W.L. Hamilton et al., Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change, 2016]

Why is this interesting?

- linguistic/societal analysis

Semantic Shift Problem

Figure from [W.L. Hamilton et al., Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change, 2016]

Why is this interesting?

- linguistic/societal analysis

Semantic Shift Problem

Figure from [W.L. Hamilton et al., Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change, 2016]

Why is this interesting?

- linguistic/societal analysis
- practical algorithmic questions:
 E.g., when should we update embeddings?
 - ightarrow e.g., RDF2Vec 1

 $^{^{1}}$ [Cochez et al., Global RDF vector space embeddings, 2017]

Related Work: Paradig. & Syntagmatic Associations

 Only types of relations between words are paradigmatic & syntagmatic¹

 $^{^{1}}$, e.g., in [F. de Saussure, Cours de linguistique generale, 1916];

Related Work: Paradig. & Syntagmatic Associations

- Only types of relations between words are paradigmatic & syntagmatic¹
- 2. Paradigmatic & syntagmatic relations capture different semantic properties²

¹, e.g., in [F. de Saussure, Cours de linguistique generale, 1916]; ² in [M. Sahlgren, The word-space model: using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces, 2006] and [Sun et al., Learning word representations by jointly modeling syntagmatic and paradigmatic relations, 2015]

Related Work: Measures of Semantic Shift

- Only types of relations between words are paradigmatic & syntagmatic¹
- 2. Paradigmatic & syntagmatic relations capture different semantic properties²

3. Several evaluation approaches for the same concept of semantic shift³

¹, e.g., in [F. de Saussure, Cours de linguistique generale, 1916]; ² in [M. Sahlgren, The word-space model: using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces, 2006] and [Sun et al., Learning word representations by jointly modeling syntagmatic and paradigmatic relations, 2015]

³ in [P. Shoemark et al., Room to Glo: A Systematic Comparison of Semantic Change Detection Approaches with Word Embeddings, 2019],[V. Kulkarni et al., Statistically Significant Detection of Linguistic Change, 2015], [A. Rosenfeld et al., Deep Neural Models of Semantic Shift, 2018]

Related Work: Measures of Semantic Shift

- Only types of relations between words are paradigmatic & syntagmatic¹
- 2. Paradigmatic & syntagmatic relations capture different semantic properties²

- 3. Several evaluation approaches for the same concept of semantic shift³
- 4. Different measures for semantic shift are different⁴

¹, e.g., in [F. de Saussure, Cours de linguistique generale, 1916]; ² in [M. Sahlgren, The word-space model: using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces, 2006] and [Sun et al., Learning word representations by jointly modeling syntagmatic and paradigmatic relations, 2015]

³ in [P. Shoemark et al., Room to Glo: A Systematic Comparison of Semantic Change Detection Approaches with Word Embeddings, 2019], [V. Kulkarni et al., Statistically Significant Detection of Linguistic Change, 2015], [A. Rosenfeld et al., Deep Neural Models of Semantic Shift, 2018]; ⁴, e.g., in [Hamilton et al., Cultural shift or linguistic drift? Comparing two computational measures of semantic change, 2016], [Hamilton et al., Diachronic word embeddings reveal statistical laws of semantic change, 2016]

Research Question

How can we evaluate the sensitivity of measures to paradigmatic & syntagmatic shift?

Experimental Setup

Quick Concept: Word Embeddings

Input

...

The refugee is a person. The refugee fled her home. The migrant cannot return safely.

A migrant is a person.
The displaced person fled his home.
The displaced person cannot return.

•••

Text Corpus

Quick Concept: Word Embeddings

Text Corpus

E.g.: Word2Vec

Quick Concept: Word Embeddings

Datasets

- 1) **Amazon** reviews: 2005 2014 with \approx six billion words
- 2) **Reddit**: 2012 2018 with \approx 170 billion words.
- 3) **Wikipedia**: 2014 2018 with \approx 13 billion words

made available by 1) [J. McAuley et al., Image-based Recommendations on Styles and Substitutes, 2015] on jmcauley.ucsd.edu/data/amazon/, 2) J. Baumgartner on https://files.pushshift.io/reddit/ and 3) Wikimedia on archive.org

Synthetic Attacks

NNs - nearest neighbors or closest words to "refugee"

Corpus Change

The refugee is a person.
The refugee fled her home.
The refugee cannot return safely.

A displaced person is a person. The displaced person fled his home. The displaced person cannot return.

Expected Embedding Change

Paradigmatic Attack

similar to [Kulkarni et al., Statistically significant detection of linguistic change, 2015]

Synthetic Attacks

NNs - nearest neighbors or closest words to "refugee"

Corpus Change

The refugee is a person. The refugee fled her home. The refugee cannot return safely. migrant

A displaced person is a person. The displaced person fled his home. The displaced person cannot return.

Corpus Change

The refugee is a per The refugee fled her home. The refugee cannot return safety.

A displaced person is a person! The displaced person fled his home. The displaced person cannot return.

Expected Embedding Change

Paradigmatic Attack

axis a₁

Expected Embedding Change

Paradigmatic

& Syntagmatic

Attack

Experimental Results

Results

Measures of Semantic Shift:

- Local Neighborhood (LN)¹
- Global Semantic Displacement (SD)²

Paradigmatic Attack

¹ [Hamilton et al., Cultural shift or linguistic drift? Comparing two computational measures of semantic change, 2016];

² [Hamilton et al., Diachronic word embeddings reveal statistical laws of semantic change, 2016]

Results

Measures of Semantic Shift:

- Local Neighborhood (LN)¹
- Global Semantic Displacement (SD)²

Paradigmatic Attack

Para. & Syntagmatic

 $^{^{1}}$ [Hamilton et al., Cultural shift or linguistic drift? Comparing two computational measures of semantic change, 2016];

² [Hamilton et al., Diachronic word embeddings reveal statistical laws of semantic change, 2016]

Empirical Results

with the best paradigmatic and syntagmatic measure

Synchronous Paradigmatic and Syntagmatic Shift

"kindle" on Amazon

"kindle" - Amazon ebook reader introduced in 2007

Synchronous Paradigmatic and Syntagmatic Shift

"kindle" on Amazon

Embedding Shift from 2006 to 2007

Syntagmatic without Paradigmatic Shift

"fifty" on Amazon

Syntagmatic without Paradigmatic Shift

"fifty" on Amazon

Embedding Shift from 2011 to 2012

In Conclusion

Results and Contributions

Results and Contributions

 \Rightarrow

- i. operationalization of paradigmatic and syntagmatic shift
- ii. more nuanced understanding of semantic shift

semantic shift ≠paradig.-/syntagmatic shift?

- semantic shift ≠paradig.-/syntagmatic shift?
- measure shift ⇒
 paradigmatic/syntagmatic
 shift?

and Future Work

- semantic shift ≠paradig.-/syntagmatic shift?
- measure shift ⇒
 paradigmatic/syntagmatic
 shift?

thresholding for (RDF) embeddings

- semantic shift ≠paradig.-/syntagmatic shift?
- measure shift ⇒
 paradigmatic/syntagmatic
 shift?

and Future Work

- thresholding for (RDF) embeddings
- inferring the reason for semantic shifts

See you at the virtual ISWC 2020 Q&A session

or online under https://annawegmann.github.io/

Paper link: https://annawegmann.github.io/pdf/Detecting-Different-Forms-of-Semantic-Shift.pdf